Factor
3\left(y-\frac{5-4\sqrt{37}}{3}\right)\left(y-\frac{4\sqrt{37}+5}{3}\right)
Evaluate
3y^{2}-10y-189
Graph
Share
Copied to clipboard
3y^{2}-10y-189=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
y=\frac{-\left(-10\right)±\sqrt{\left(-10\right)^{2}-4\times 3\left(-189\right)}}{2\times 3}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
y=\frac{-\left(-10\right)±\sqrt{100-4\times 3\left(-189\right)}}{2\times 3}
Square -10.
y=\frac{-\left(-10\right)±\sqrt{100-12\left(-189\right)}}{2\times 3}
Multiply -4 times 3.
y=\frac{-\left(-10\right)±\sqrt{100+2268}}{2\times 3}
Multiply -12 times -189.
y=\frac{-\left(-10\right)±\sqrt{2368}}{2\times 3}
Add 100 to 2268.
y=\frac{-\left(-10\right)±8\sqrt{37}}{2\times 3}
Take the square root of 2368.
y=\frac{10±8\sqrt{37}}{2\times 3}
The opposite of -10 is 10.
y=\frac{10±8\sqrt{37}}{6}
Multiply 2 times 3.
y=\frac{8\sqrt{37}+10}{6}
Now solve the equation y=\frac{10±8\sqrt{37}}{6} when ± is plus. Add 10 to 8\sqrt{37}.
y=\frac{4\sqrt{37}+5}{3}
Divide 10+8\sqrt{37} by 6.
y=\frac{10-8\sqrt{37}}{6}
Now solve the equation y=\frac{10±8\sqrt{37}}{6} when ± is minus. Subtract 8\sqrt{37} from 10.
y=\frac{5-4\sqrt{37}}{3}
Divide 10-8\sqrt{37} by 6.
3y^{2}-10y-189=3\left(y-\frac{4\sqrt{37}+5}{3}\right)\left(y-\frac{5-4\sqrt{37}}{3}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{5+4\sqrt{37}}{3} for x_{1} and \frac{5-4\sqrt{37}}{3} for x_{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}