Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

a+b=17 ab=3\left(-28\right)=-84
Factor the expression by grouping. First, the expression needs to be rewritten as 3y^{2}+ay+by-28. To find a and b, set up a system to be solved.
-1,84 -2,42 -3,28 -4,21 -6,14 -7,12
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -84.
-1+84=83 -2+42=40 -3+28=25 -4+21=17 -6+14=8 -7+12=5
Calculate the sum for each pair.
a=-4 b=21
The solution is the pair that gives sum 17.
\left(3y^{2}-4y\right)+\left(21y-28\right)
Rewrite 3y^{2}+17y-28 as \left(3y^{2}-4y\right)+\left(21y-28\right).
y\left(3y-4\right)+7\left(3y-4\right)
Factor out y in the first and 7 in the second group.
\left(3y-4\right)\left(y+7\right)
Factor out common term 3y-4 by using distributive property.
3y^{2}+17y-28=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
y=\frac{-17±\sqrt{17^{2}-4\times 3\left(-28\right)}}{2\times 3}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
y=\frac{-17±\sqrt{289-4\times 3\left(-28\right)}}{2\times 3}
Square 17.
y=\frac{-17±\sqrt{289-12\left(-28\right)}}{2\times 3}
Multiply -4 times 3.
y=\frac{-17±\sqrt{289+336}}{2\times 3}
Multiply -12 times -28.
y=\frac{-17±\sqrt{625}}{2\times 3}
Add 289 to 336.
y=\frac{-17±25}{2\times 3}
Take the square root of 625.
y=\frac{-17±25}{6}
Multiply 2 times 3.
y=\frac{8}{6}
Now solve the equation y=\frac{-17±25}{6} when ± is plus. Add -17 to 25.
y=\frac{4}{3}
Reduce the fraction \frac{8}{6} to lowest terms by extracting and canceling out 2.
y=-\frac{42}{6}
Now solve the equation y=\frac{-17±25}{6} when ± is minus. Subtract 25 from -17.
y=-7
Divide -42 by 6.
3y^{2}+17y-28=3\left(y-\frac{4}{3}\right)\left(y-\left(-7\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{4}{3} for x_{1} and -7 for x_{2}.
3y^{2}+17y-28=3\left(y-\frac{4}{3}\right)\left(y+7\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
3y^{2}+17y-28=3\times \frac{3y-4}{3}\left(y+7\right)
Subtract \frac{4}{3} from y by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
3y^{2}+17y-28=\left(3y-4\right)\left(y+7\right)
Cancel out 3, the greatest common factor in 3 and 3.