Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

3x^{2}-x-8=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-1\right)±\sqrt{1-4\times 3\left(-8\right)}}{2\times 3}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-1\right)±\sqrt{1-12\left(-8\right)}}{2\times 3}
Multiply -4 times 3.
x=\frac{-\left(-1\right)±\sqrt{1+96}}{2\times 3}
Multiply -12 times -8.
x=\frac{-\left(-1\right)±\sqrt{97}}{2\times 3}
Add 1 to 96.
x=\frac{1±\sqrt{97}}{2\times 3}
The opposite of -1 is 1.
x=\frac{1±\sqrt{97}}{6}
Multiply 2 times 3.
x=\frac{\sqrt{97}+1}{6}
Now solve the equation x=\frac{1±\sqrt{97}}{6} when ± is plus. Add 1 to \sqrt{97}.
x=\frac{1-\sqrt{97}}{6}
Now solve the equation x=\frac{1±\sqrt{97}}{6} when ± is minus. Subtract \sqrt{97} from 1.
3x^{2}-x-8=3\left(x-\frac{\sqrt{97}+1}{6}\right)\left(x-\frac{1-\sqrt{97}}{6}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{1+\sqrt{97}}{6} for x_{1} and \frac{1-\sqrt{97}}{6} for x_{2}.