Factor
\left(x-2\right)\left(3x+5\right)
Evaluate
\left(x-2\right)\left(3x+5\right)
Graph
Share
Copied to clipboard
a+b=-1 ab=3\left(-10\right)=-30
Factor the expression by grouping. First, the expression needs to be rewritten as 3x^{2}+ax+bx-10. To find a and b, set up a system to be solved.
1,-30 2,-15 3,-10 5,-6
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -30.
1-30=-29 2-15=-13 3-10=-7 5-6=-1
Calculate the sum for each pair.
a=-6 b=5
The solution is the pair that gives sum -1.
\left(3x^{2}-6x\right)+\left(5x-10\right)
Rewrite 3x^{2}-x-10 as \left(3x^{2}-6x\right)+\left(5x-10\right).
3x\left(x-2\right)+5\left(x-2\right)
Factor out 3x in the first and 5 in the second group.
\left(x-2\right)\left(3x+5\right)
Factor out common term x-2 by using distributive property.
3x^{2}-x-10=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-1\right)±\sqrt{1-4\times 3\left(-10\right)}}{2\times 3}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-1\right)±\sqrt{1-12\left(-10\right)}}{2\times 3}
Multiply -4 times 3.
x=\frac{-\left(-1\right)±\sqrt{1+120}}{2\times 3}
Multiply -12 times -10.
x=\frac{-\left(-1\right)±\sqrt{121}}{2\times 3}
Add 1 to 120.
x=\frac{-\left(-1\right)±11}{2\times 3}
Take the square root of 121.
x=\frac{1±11}{2\times 3}
The opposite of -1 is 1.
x=\frac{1±11}{6}
Multiply 2 times 3.
x=\frac{12}{6}
Now solve the equation x=\frac{1±11}{6} when ± is plus. Add 1 to 11.
x=2
Divide 12 by 6.
x=-\frac{10}{6}
Now solve the equation x=\frac{1±11}{6} when ± is minus. Subtract 11 from 1.
x=-\frac{5}{3}
Reduce the fraction \frac{-10}{6} to lowest terms by extracting and canceling out 2.
3x^{2}-x-10=3\left(x-2\right)\left(x-\left(-\frac{5}{3}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 2 for x_{1} and -\frac{5}{3} for x_{2}.
3x^{2}-x-10=3\left(x-2\right)\left(x+\frac{5}{3}\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
3x^{2}-x-10=3\left(x-2\right)\times \frac{3x+5}{3}
Add \frac{5}{3} to x by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
3x^{2}-x-10=\left(x-2\right)\left(3x+5\right)
Cancel out 3, the greatest common factor in 3 and 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}