Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

a+b=-1 ab=3\left(-10\right)=-30
Factor the expression by grouping. First, the expression needs to be rewritten as 3x^{2}+ax+bx-10. To find a and b, set up a system to be solved.
1,-30 2,-15 3,-10 5,-6
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -30.
1-30=-29 2-15=-13 3-10=-7 5-6=-1
Calculate the sum for each pair.
a=-6 b=5
The solution is the pair that gives sum -1.
\left(3x^{2}-6x\right)+\left(5x-10\right)
Rewrite 3x^{2}-x-10 as \left(3x^{2}-6x\right)+\left(5x-10\right).
3x\left(x-2\right)+5\left(x-2\right)
Factor out 3x in the first and 5 in the second group.
\left(x-2\right)\left(3x+5\right)
Factor out common term x-2 by using distributive property.
3x^{2}-x-10=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-1\right)±\sqrt{1-4\times 3\left(-10\right)}}{2\times 3}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-1\right)±\sqrt{1-12\left(-10\right)}}{2\times 3}
Multiply -4 times 3.
x=\frac{-\left(-1\right)±\sqrt{1+120}}{2\times 3}
Multiply -12 times -10.
x=\frac{-\left(-1\right)±\sqrt{121}}{2\times 3}
Add 1 to 120.
x=\frac{-\left(-1\right)±11}{2\times 3}
Take the square root of 121.
x=\frac{1±11}{2\times 3}
The opposite of -1 is 1.
x=\frac{1±11}{6}
Multiply 2 times 3.
x=\frac{12}{6}
Now solve the equation x=\frac{1±11}{6} when ± is plus. Add 1 to 11.
x=2
Divide 12 by 6.
x=-\frac{10}{6}
Now solve the equation x=\frac{1±11}{6} when ± is minus. Subtract 11 from 1.
x=-\frac{5}{3}
Reduce the fraction \frac{-10}{6} to lowest terms by extracting and canceling out 2.
3x^{2}-x-10=3\left(x-2\right)\left(x-\left(-\frac{5}{3}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 2 for x_{1} and -\frac{5}{3} for x_{2}.
3x^{2}-x-10=3\left(x-2\right)\left(x+\frac{5}{3}\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
3x^{2}-x-10=3\left(x-2\right)\times \frac{3x+5}{3}
Add \frac{5}{3} to x by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
3x^{2}-x-10=\left(x-2\right)\left(3x+5\right)
Cancel out 3, the greatest common factor in 3 and 3.