Solve for m (complex solution)
\left\{\begin{matrix}\\m=-1\text{, }&\text{unconditionally}\\m\in \mathrm{C}\text{, }&x=-4\text{ or }x=0\end{matrix}\right.
Solve for m
\left\{\begin{matrix}\\m=-1\text{, }&\text{unconditionally}\\m\in \mathrm{R}\text{, }&x=-4\text{ or }x=0\end{matrix}\right.
Solve for x (complex solution)
\left\{\begin{matrix}\\x=-4\text{; }x=0\text{, }&\text{unconditionally}\\x\in \mathrm{C}\text{, }&m=-1\end{matrix}\right.
Solve for x
\left\{\begin{matrix}\\x=-4\text{; }x=0\text{, }&\text{unconditionally}\\x\in \mathrm{R}\text{, }&m=-1\end{matrix}\right.
Graph
Share
Copied to clipboard
3x^{2}-\left(mx^{2}+4mx\right)=4x\left(x-1\right)+8x
Use the distributive property to multiply mx by x+4.
3x^{2}-mx^{2}-4mx=4x\left(x-1\right)+8x
To find the opposite of mx^{2}+4mx, find the opposite of each term.
3x^{2}-mx^{2}-4mx=4x^{2}-4x+8x
Use the distributive property to multiply 4x by x-1.
3x^{2}-mx^{2}-4mx=4x^{2}+4x
Combine -4x and 8x to get 4x.
-mx^{2}-4mx=4x^{2}+4x-3x^{2}
Subtract 3x^{2} from both sides.
-mx^{2}-4mx=x^{2}+4x
Combine 4x^{2} and -3x^{2} to get x^{2}.
\left(-x^{2}-4x\right)m=x^{2}+4x
Combine all terms containing m.
\frac{\left(-x^{2}-4x\right)m}{-x^{2}-4x}=\frac{x\left(x+4\right)}{-x^{2}-4x}
Divide both sides by -x^{2}-4x.
m=\frac{x\left(x+4\right)}{-x^{2}-4x}
Dividing by -x^{2}-4x undoes the multiplication by -x^{2}-4x.
m=-1
Divide x\left(4+x\right) by -x^{2}-4x.
3x^{2}-\left(mx^{2}+4mx\right)=4x\left(x-1\right)+8x
Use the distributive property to multiply mx by x+4.
3x^{2}-mx^{2}-4mx=4x\left(x-1\right)+8x
To find the opposite of mx^{2}+4mx, find the opposite of each term.
3x^{2}-mx^{2}-4mx=4x^{2}-4x+8x
Use the distributive property to multiply 4x by x-1.
3x^{2}-mx^{2}-4mx=4x^{2}+4x
Combine -4x and 8x to get 4x.
-mx^{2}-4mx=4x^{2}+4x-3x^{2}
Subtract 3x^{2} from both sides.
-mx^{2}-4mx=x^{2}+4x
Combine 4x^{2} and -3x^{2} to get x^{2}.
\left(-x^{2}-4x\right)m=x^{2}+4x
Combine all terms containing m.
\frac{\left(-x^{2}-4x\right)m}{-x^{2}-4x}=\frac{x\left(x+4\right)}{-x^{2}-4x}
Divide both sides by -x^{2}-4x.
m=\frac{x\left(x+4\right)}{-x^{2}-4x}
Dividing by -x^{2}-4x undoes the multiplication by -x^{2}-4x.
m=-1
Divide x\left(4+x\right) by -x^{2}-4x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}