Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

3x^{2}-9x+3=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-9\right)±\sqrt{\left(-9\right)^{2}-4\times 3\times 3}}{2\times 3}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-9\right)±\sqrt{81-4\times 3\times 3}}{2\times 3}
Square -9.
x=\frac{-\left(-9\right)±\sqrt{81-12\times 3}}{2\times 3}
Multiply -4 times 3.
x=\frac{-\left(-9\right)±\sqrt{81-36}}{2\times 3}
Multiply -12 times 3.
x=\frac{-\left(-9\right)±\sqrt{45}}{2\times 3}
Add 81 to -36.
x=\frac{-\left(-9\right)±3\sqrt{5}}{2\times 3}
Take the square root of 45.
x=\frac{9±3\sqrt{5}}{2\times 3}
The opposite of -9 is 9.
x=\frac{9±3\sqrt{5}}{6}
Multiply 2 times 3.
x=\frac{3\sqrt{5}+9}{6}
Now solve the equation x=\frac{9±3\sqrt{5}}{6} when ± is plus. Add 9 to 3\sqrt{5}.
x=\frac{\sqrt{5}+3}{2}
Divide 9+3\sqrt{5} by 6.
x=\frac{9-3\sqrt{5}}{6}
Now solve the equation x=\frac{9±3\sqrt{5}}{6} when ± is minus. Subtract 3\sqrt{5} from 9.
x=\frac{3-\sqrt{5}}{2}
Divide 9-3\sqrt{5} by 6.
3x^{2}-9x+3=3\left(x-\frac{\sqrt{5}+3}{2}\right)\left(x-\frac{3-\sqrt{5}}{2}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{3+\sqrt{5}}{2} for x_{1} and \frac{3-\sqrt{5}}{2} for x_{2}.