Solve for x (complex solution)
x=\frac{5\sqrt{33}i}{3}+15\approx 15+9.574271078i
x=-\frac{5\sqrt{33}i}{3}+15\approx 15-9.574271078i
Graph
Share
Copied to clipboard
3x^{2}-90x+950=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-90\right)±\sqrt{\left(-90\right)^{2}-4\times 3\times 950}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, -90 for b, and 950 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-90\right)±\sqrt{8100-4\times 3\times 950}}{2\times 3}
Square -90.
x=\frac{-\left(-90\right)±\sqrt{8100-12\times 950}}{2\times 3}
Multiply -4 times 3.
x=\frac{-\left(-90\right)±\sqrt{8100-11400}}{2\times 3}
Multiply -12 times 950.
x=\frac{-\left(-90\right)±\sqrt{-3300}}{2\times 3}
Add 8100 to -11400.
x=\frac{-\left(-90\right)±10\sqrt{33}i}{2\times 3}
Take the square root of -3300.
x=\frac{90±10\sqrt{33}i}{2\times 3}
The opposite of -90 is 90.
x=\frac{90±10\sqrt{33}i}{6}
Multiply 2 times 3.
x=\frac{90+10\sqrt{33}i}{6}
Now solve the equation x=\frac{90±10\sqrt{33}i}{6} when ± is plus. Add 90 to 10i\sqrt{33}.
x=\frac{5\sqrt{33}i}{3}+15
Divide 90+10i\sqrt{33} by 6.
x=\frac{-10\sqrt{33}i+90}{6}
Now solve the equation x=\frac{90±10\sqrt{33}i}{6} when ± is minus. Subtract 10i\sqrt{33} from 90.
x=-\frac{5\sqrt{33}i}{3}+15
Divide 90-10i\sqrt{33} by 6.
x=\frac{5\sqrt{33}i}{3}+15 x=-\frac{5\sqrt{33}i}{3}+15
The equation is now solved.
3x^{2}-90x+950=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
3x^{2}-90x+950-950=-950
Subtract 950 from both sides of the equation.
3x^{2}-90x=-950
Subtracting 950 from itself leaves 0.
\frac{3x^{2}-90x}{3}=-\frac{950}{3}
Divide both sides by 3.
x^{2}+\left(-\frac{90}{3}\right)x=-\frac{950}{3}
Dividing by 3 undoes the multiplication by 3.
x^{2}-30x=-\frac{950}{3}
Divide -90 by 3.
x^{2}-30x+\left(-15\right)^{2}=-\frac{950}{3}+\left(-15\right)^{2}
Divide -30, the coefficient of the x term, by 2 to get -15. Then add the square of -15 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-30x+225=-\frac{950}{3}+225
Square -15.
x^{2}-30x+225=-\frac{275}{3}
Add -\frac{950}{3} to 225.
\left(x-15\right)^{2}=-\frac{275}{3}
Factor x^{2}-30x+225. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-15\right)^{2}}=\sqrt{-\frac{275}{3}}
Take the square root of both sides of the equation.
x-15=\frac{5\sqrt{33}i}{3} x-15=-\frac{5\sqrt{33}i}{3}
Simplify.
x=\frac{5\sqrt{33}i}{3}+15 x=-\frac{5\sqrt{33}i}{3}+15
Add 15 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}