Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

3x^{2}-8x+2=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\times 3\times 2}}{2\times 3}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-8\right)±\sqrt{64-4\times 3\times 2}}{2\times 3}
Square -8.
x=\frac{-\left(-8\right)±\sqrt{64-12\times 2}}{2\times 3}
Multiply -4 times 3.
x=\frac{-\left(-8\right)±\sqrt{64-24}}{2\times 3}
Multiply -12 times 2.
x=\frac{-\left(-8\right)±\sqrt{40}}{2\times 3}
Add 64 to -24.
x=\frac{-\left(-8\right)±2\sqrt{10}}{2\times 3}
Take the square root of 40.
x=\frac{8±2\sqrt{10}}{2\times 3}
The opposite of -8 is 8.
x=\frac{8±2\sqrt{10}}{6}
Multiply 2 times 3.
x=\frac{2\sqrt{10}+8}{6}
Now solve the equation x=\frac{8±2\sqrt{10}}{6} when ± is plus. Add 8 to 2\sqrt{10}.
x=\frac{\sqrt{10}+4}{3}
Divide 8+2\sqrt{10} by 6.
x=\frac{8-2\sqrt{10}}{6}
Now solve the equation x=\frac{8±2\sqrt{10}}{6} when ± is minus. Subtract 2\sqrt{10} from 8.
x=\frac{4-\sqrt{10}}{3}
Divide 8-2\sqrt{10} by 6.
3x^{2}-8x+2=3\left(x-\frac{\sqrt{10}+4}{3}\right)\left(x-\frac{4-\sqrt{10}}{3}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{4+\sqrt{10}}{3} for x_{1} and \frac{4-\sqrt{10}}{3} for x_{2}.