Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

3x^{2}-6x-5=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\times 3\left(-5\right)}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, -6 for b, and -5 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-6\right)±\sqrt{36-4\times 3\left(-5\right)}}{2\times 3}
Square -6.
x=\frac{-\left(-6\right)±\sqrt{36-12\left(-5\right)}}{2\times 3}
Multiply -4 times 3.
x=\frac{-\left(-6\right)±\sqrt{36+60}}{2\times 3}
Multiply -12 times -5.
x=\frac{-\left(-6\right)±\sqrt{96}}{2\times 3}
Add 36 to 60.
x=\frac{-\left(-6\right)±4\sqrt{6}}{2\times 3}
Take the square root of 96.
x=\frac{6±4\sqrt{6}}{2\times 3}
The opposite of -6 is 6.
x=\frac{6±4\sqrt{6}}{6}
Multiply 2 times 3.
x=\frac{4\sqrt{6}+6}{6}
Now solve the equation x=\frac{6±4\sqrt{6}}{6} when ± is plus. Add 6 to 4\sqrt{6}.
x=\frac{2\sqrt{6}}{3}+1
Divide 6+4\sqrt{6} by 6.
x=\frac{6-4\sqrt{6}}{6}
Now solve the equation x=\frac{6±4\sqrt{6}}{6} when ± is minus. Subtract 4\sqrt{6} from 6.
x=-\frac{2\sqrt{6}}{3}+1
Divide 6-4\sqrt{6} by 6.
x=\frac{2\sqrt{6}}{3}+1 x=-\frac{2\sqrt{6}}{3}+1
The equation is now solved.
3x^{2}-6x-5=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
3x^{2}-6x-5-\left(-5\right)=-\left(-5\right)
Add 5 to both sides of the equation.
3x^{2}-6x=-\left(-5\right)
Subtracting -5 from itself leaves 0.
3x^{2}-6x=5
Subtract -5 from 0.
\frac{3x^{2}-6x}{3}=\frac{5}{3}
Divide both sides by 3.
x^{2}+\left(-\frac{6}{3}\right)x=\frac{5}{3}
Dividing by 3 undoes the multiplication by 3.
x^{2}-2x=\frac{5}{3}
Divide -6 by 3.
x^{2}-2x+1=\frac{5}{3}+1
Divide -2, the coefficient of the x term, by 2 to get -1. Then add the square of -1 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-2x+1=\frac{8}{3}
Add \frac{5}{3} to 1.
\left(x-1\right)^{2}=\frac{8}{3}
Factor x^{2}-2x+1. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-1\right)^{2}}=\sqrt{\frac{8}{3}}
Take the square root of both sides of the equation.
x-1=\frac{2\sqrt{6}}{3} x-1=-\frac{2\sqrt{6}}{3}
Simplify.
x=\frac{2\sqrt{6}}{3}+1 x=-\frac{2\sqrt{6}}{3}+1
Add 1 to both sides of the equation.