Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

3x^{2}-6=x^{2}-x-6
Use the distributive property to multiply x+2 by x-3 and combine like terms.
3x^{2}-6-x^{2}=-x-6
Subtract x^{2} from both sides.
2x^{2}-6=-x-6
Combine 3x^{2} and -x^{2} to get 2x^{2}.
2x^{2}-6+x=-6
Add x to both sides.
2x^{2}-6+x+6=0
Add 6 to both sides.
2x^{2}+x=0
Add -6 and 6 to get 0.
x\left(2x+1\right)=0
Factor out x.
x=0 x=-\frac{1}{2}
To find equation solutions, solve x=0 and 2x+1=0.
3x^{2}-6=x^{2}-x-6
Use the distributive property to multiply x+2 by x-3 and combine like terms.
3x^{2}-6-x^{2}=-x-6
Subtract x^{2} from both sides.
2x^{2}-6=-x-6
Combine 3x^{2} and -x^{2} to get 2x^{2}.
2x^{2}-6+x=-6
Add x to both sides.
2x^{2}-6+x+6=0
Add 6 to both sides.
2x^{2}+x=0
Add -6 and 6 to get 0.
x=\frac{-1±\sqrt{1^{2}}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, 1 for b, and 0 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-1±1}{2\times 2}
Take the square root of 1^{2}.
x=\frac{-1±1}{4}
Multiply 2 times 2.
x=\frac{0}{4}
Now solve the equation x=\frac{-1±1}{4} when ± is plus. Add -1 to 1.
x=0
Divide 0 by 4.
x=-\frac{2}{4}
Now solve the equation x=\frac{-1±1}{4} when ± is minus. Subtract 1 from -1.
x=-\frac{1}{2}
Reduce the fraction \frac{-2}{4} to lowest terms by extracting and canceling out 2.
x=0 x=-\frac{1}{2}
The equation is now solved.
3x^{2}-6=x^{2}-x-6
Use the distributive property to multiply x+2 by x-3 and combine like terms.
3x^{2}-6-x^{2}=-x-6
Subtract x^{2} from both sides.
2x^{2}-6=-x-6
Combine 3x^{2} and -x^{2} to get 2x^{2}.
2x^{2}-6+x=-6
Add x to both sides.
2x^{2}+x=-6+6
Add 6 to both sides.
2x^{2}+x=0
Add -6 and 6 to get 0.
\frac{2x^{2}+x}{2}=\frac{0}{2}
Divide both sides by 2.
x^{2}+\frac{1}{2}x=\frac{0}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}+\frac{1}{2}x=0
Divide 0 by 2.
x^{2}+\frac{1}{2}x+\left(\frac{1}{4}\right)^{2}=\left(\frac{1}{4}\right)^{2}
Divide \frac{1}{2}, the coefficient of the x term, by 2 to get \frac{1}{4}. Then add the square of \frac{1}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{1}{2}x+\frac{1}{16}=\frac{1}{16}
Square \frac{1}{4} by squaring both the numerator and the denominator of the fraction.
\left(x+\frac{1}{4}\right)^{2}=\frac{1}{16}
Factor x^{2}+\frac{1}{2}x+\frac{1}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{4}\right)^{2}}=\sqrt{\frac{1}{16}}
Take the square root of both sides of the equation.
x+\frac{1}{4}=\frac{1}{4} x+\frac{1}{4}=-\frac{1}{4}
Simplify.
x=0 x=-\frac{1}{2}
Subtract \frac{1}{4} from both sides of the equation.