Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

a+b=-53 ab=3\times 232=696
Factor the expression by grouping. First, the expression needs to be rewritten as 3x^{2}+ax+bx+232. To find a and b, set up a system to be solved.
-1,-696 -2,-348 -3,-232 -4,-174 -6,-116 -8,-87 -12,-58 -24,-29
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 696.
-1-696=-697 -2-348=-350 -3-232=-235 -4-174=-178 -6-116=-122 -8-87=-95 -12-58=-70 -24-29=-53
Calculate the sum for each pair.
a=-29 b=-24
The solution is the pair that gives sum -53.
\left(3x^{2}-29x\right)+\left(-24x+232\right)
Rewrite 3x^{2}-53x+232 as \left(3x^{2}-29x\right)+\left(-24x+232\right).
x\left(3x-29\right)-8\left(3x-29\right)
Factor out x in the first and -8 in the second group.
\left(3x-29\right)\left(x-8\right)
Factor out common term 3x-29 by using distributive property.
3x^{2}-53x+232=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-53\right)±\sqrt{\left(-53\right)^{2}-4\times 3\times 232}}{2\times 3}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-53\right)±\sqrt{2809-4\times 3\times 232}}{2\times 3}
Square -53.
x=\frac{-\left(-53\right)±\sqrt{2809-12\times 232}}{2\times 3}
Multiply -4 times 3.
x=\frac{-\left(-53\right)±\sqrt{2809-2784}}{2\times 3}
Multiply -12 times 232.
x=\frac{-\left(-53\right)±\sqrt{25}}{2\times 3}
Add 2809 to -2784.
x=\frac{-\left(-53\right)±5}{2\times 3}
Take the square root of 25.
x=\frac{53±5}{2\times 3}
The opposite of -53 is 53.
x=\frac{53±5}{6}
Multiply 2 times 3.
x=\frac{58}{6}
Now solve the equation x=\frac{53±5}{6} when ± is plus. Add 53 to 5.
x=\frac{29}{3}
Reduce the fraction \frac{58}{6} to lowest terms by extracting and canceling out 2.
x=\frac{48}{6}
Now solve the equation x=\frac{53±5}{6} when ± is minus. Subtract 5 from 53.
x=8
Divide 48 by 6.
3x^{2}-53x+232=3\left(x-\frac{29}{3}\right)\left(x-8\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{29}{3} for x_{1} and 8 for x_{2}.
3x^{2}-53x+232=3\times \frac{3x-29}{3}\left(x-8\right)
Subtract \frac{29}{3} from x by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
3x^{2}-53x+232=\left(3x-29\right)\left(x-8\right)
Cancel out 3, the greatest common factor in 3 and 3.