Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

3x^{2}-3x-6=9
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
3x^{2}-3x-6-9=9-9
Subtract 9 from both sides of the equation.
3x^{2}-3x-6-9=0
Subtracting 9 from itself leaves 0.
3x^{2}-3x-15=0
Subtract 9 from -6.
x=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\times 3\left(-15\right)}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, -3 for b, and -15 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-3\right)±\sqrt{9-4\times 3\left(-15\right)}}{2\times 3}
Square -3.
x=\frac{-\left(-3\right)±\sqrt{9-12\left(-15\right)}}{2\times 3}
Multiply -4 times 3.
x=\frac{-\left(-3\right)±\sqrt{9+180}}{2\times 3}
Multiply -12 times -15.
x=\frac{-\left(-3\right)±\sqrt{189}}{2\times 3}
Add 9 to 180.
x=\frac{-\left(-3\right)±3\sqrt{21}}{2\times 3}
Take the square root of 189.
x=\frac{3±3\sqrt{21}}{2\times 3}
The opposite of -3 is 3.
x=\frac{3±3\sqrt{21}}{6}
Multiply 2 times 3.
x=\frac{3\sqrt{21}+3}{6}
Now solve the equation x=\frac{3±3\sqrt{21}}{6} when ± is plus. Add 3 to 3\sqrt{21}.
x=\frac{\sqrt{21}+1}{2}
Divide 3+3\sqrt{21} by 6.
x=\frac{3-3\sqrt{21}}{6}
Now solve the equation x=\frac{3±3\sqrt{21}}{6} when ± is minus. Subtract 3\sqrt{21} from 3.
x=\frac{1-\sqrt{21}}{2}
Divide 3-3\sqrt{21} by 6.
x=\frac{\sqrt{21}+1}{2} x=\frac{1-\sqrt{21}}{2}
The equation is now solved.
3x^{2}-3x-6=9
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
3x^{2}-3x-6-\left(-6\right)=9-\left(-6\right)
Add 6 to both sides of the equation.
3x^{2}-3x=9-\left(-6\right)
Subtracting -6 from itself leaves 0.
3x^{2}-3x=15
Subtract -6 from 9.
\frac{3x^{2}-3x}{3}=\frac{15}{3}
Divide both sides by 3.
x^{2}+\left(-\frac{3}{3}\right)x=\frac{15}{3}
Dividing by 3 undoes the multiplication by 3.
x^{2}-x=\frac{15}{3}
Divide -3 by 3.
x^{2}-x=5
Divide 15 by 3.
x^{2}-x+\left(-\frac{1}{2}\right)^{2}=5+\left(-\frac{1}{2}\right)^{2}
Divide -1, the coefficient of the x term, by 2 to get -\frac{1}{2}. Then add the square of -\frac{1}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-x+\frac{1}{4}=5+\frac{1}{4}
Square -\frac{1}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-x+\frac{1}{4}=\frac{21}{4}
Add 5 to \frac{1}{4}.
\left(x-\frac{1}{2}\right)^{2}=\frac{21}{4}
Factor x^{2}-x+\frac{1}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{2}\right)^{2}}=\sqrt{\frac{21}{4}}
Take the square root of both sides of the equation.
x-\frac{1}{2}=\frac{\sqrt{21}}{2} x-\frac{1}{2}=-\frac{\sqrt{21}}{2}
Simplify.
x=\frac{\sqrt{21}+1}{2} x=\frac{1-\sqrt{21}}{2}
Add \frac{1}{2} to both sides of the equation.