Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

3x^{2}-36x+104=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-36\right)±\sqrt{\left(-36\right)^{2}-4\times 3\times 104}}{2\times 3}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-36\right)±\sqrt{1296-4\times 3\times 104}}{2\times 3}
Square -36.
x=\frac{-\left(-36\right)±\sqrt{1296-12\times 104}}{2\times 3}
Multiply -4 times 3.
x=\frac{-\left(-36\right)±\sqrt{1296-1248}}{2\times 3}
Multiply -12 times 104.
x=\frac{-\left(-36\right)±\sqrt{48}}{2\times 3}
Add 1296 to -1248.
x=\frac{-\left(-36\right)±4\sqrt{3}}{2\times 3}
Take the square root of 48.
x=\frac{36±4\sqrt{3}}{2\times 3}
The opposite of -36 is 36.
x=\frac{36±4\sqrt{3}}{6}
Multiply 2 times 3.
x=\frac{4\sqrt{3}+36}{6}
Now solve the equation x=\frac{36±4\sqrt{3}}{6} when ± is plus. Add 36 to 4\sqrt{3}.
x=\frac{2\sqrt{3}}{3}+6
Divide 36+4\sqrt{3} by 6.
x=\frac{36-4\sqrt{3}}{6}
Now solve the equation x=\frac{36±4\sqrt{3}}{6} when ± is minus. Subtract 4\sqrt{3} from 36.
x=-\frac{2\sqrt{3}}{3}+6
Divide 36-4\sqrt{3} by 6.
3x^{2}-36x+104=3\left(x-\left(\frac{2\sqrt{3}}{3}+6\right)\right)\left(x-\left(-\frac{2\sqrt{3}}{3}+6\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 6+\frac{2\sqrt{3}}{3} for x_{1} and 6-\frac{2\sqrt{3}}{3} for x_{2}.