Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

3x^{2}-32x+72=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-32\right)±\sqrt{\left(-32\right)^{2}-4\times 3\times 72}}{2\times 3}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-32\right)±\sqrt{1024-4\times 3\times 72}}{2\times 3}
Square -32.
x=\frac{-\left(-32\right)±\sqrt{1024-12\times 72}}{2\times 3}
Multiply -4 times 3.
x=\frac{-\left(-32\right)±\sqrt{1024-864}}{2\times 3}
Multiply -12 times 72.
x=\frac{-\left(-32\right)±\sqrt{160}}{2\times 3}
Add 1024 to -864.
x=\frac{-\left(-32\right)±4\sqrt{10}}{2\times 3}
Take the square root of 160.
x=\frac{32±4\sqrt{10}}{2\times 3}
The opposite of -32 is 32.
x=\frac{32±4\sqrt{10}}{6}
Multiply 2 times 3.
x=\frac{4\sqrt{10}+32}{6}
Now solve the equation x=\frac{32±4\sqrt{10}}{6} when ± is plus. Add 32 to 4\sqrt{10}.
x=\frac{2\sqrt{10}+16}{3}
Divide 32+4\sqrt{10} by 6.
x=\frac{32-4\sqrt{10}}{6}
Now solve the equation x=\frac{32±4\sqrt{10}}{6} when ± is minus. Subtract 4\sqrt{10} from 32.
x=\frac{16-2\sqrt{10}}{3}
Divide 32-4\sqrt{10} by 6.
3x^{2}-32x+72=3\left(x-\frac{2\sqrt{10}+16}{3}\right)\left(x-\frac{16-2\sqrt{10}}{3}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{16+2\sqrt{10}}{3} for x_{1} and \frac{16-2\sqrt{10}}{3} for x_{2}.