Solve for x
x = \frac{2 \sqrt{7} + 1}{3} \approx 2.097167541
x=\frac{1-2\sqrt{7}}{3}\approx -1.430500874
Graph
Share
Copied to clipboard
3x^{2}-2x-9=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\times 3\left(-9\right)}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, -2 for b, and -9 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-2\right)±\sqrt{4-4\times 3\left(-9\right)}}{2\times 3}
Square -2.
x=\frac{-\left(-2\right)±\sqrt{4-12\left(-9\right)}}{2\times 3}
Multiply -4 times 3.
x=\frac{-\left(-2\right)±\sqrt{4+108}}{2\times 3}
Multiply -12 times -9.
x=\frac{-\left(-2\right)±\sqrt{112}}{2\times 3}
Add 4 to 108.
x=\frac{-\left(-2\right)±4\sqrt{7}}{2\times 3}
Take the square root of 112.
x=\frac{2±4\sqrt{7}}{2\times 3}
The opposite of -2 is 2.
x=\frac{2±4\sqrt{7}}{6}
Multiply 2 times 3.
x=\frac{4\sqrt{7}+2}{6}
Now solve the equation x=\frac{2±4\sqrt{7}}{6} when ± is plus. Add 2 to 4\sqrt{7}.
x=\frac{2\sqrt{7}+1}{3}
Divide 2+4\sqrt{7} by 6.
x=\frac{2-4\sqrt{7}}{6}
Now solve the equation x=\frac{2±4\sqrt{7}}{6} when ± is minus. Subtract 4\sqrt{7} from 2.
x=\frac{1-2\sqrt{7}}{3}
Divide 2-4\sqrt{7} by 6.
x=\frac{2\sqrt{7}+1}{3} x=\frac{1-2\sqrt{7}}{3}
The equation is now solved.
3x^{2}-2x-9=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
3x^{2}-2x-9-\left(-9\right)=-\left(-9\right)
Add 9 to both sides of the equation.
3x^{2}-2x=-\left(-9\right)
Subtracting -9 from itself leaves 0.
3x^{2}-2x=9
Subtract -9 from 0.
\frac{3x^{2}-2x}{3}=\frac{9}{3}
Divide both sides by 3.
x^{2}-\frac{2}{3}x=\frac{9}{3}
Dividing by 3 undoes the multiplication by 3.
x^{2}-\frac{2}{3}x=3
Divide 9 by 3.
x^{2}-\frac{2}{3}x+\left(-\frac{1}{3}\right)^{2}=3+\left(-\frac{1}{3}\right)^{2}
Divide -\frac{2}{3}, the coefficient of the x term, by 2 to get -\frac{1}{3}. Then add the square of -\frac{1}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{2}{3}x+\frac{1}{9}=3+\frac{1}{9}
Square -\frac{1}{3} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{2}{3}x+\frac{1}{9}=\frac{28}{9}
Add 3 to \frac{1}{9}.
\left(x-\frac{1}{3}\right)^{2}=\frac{28}{9}
Factor x^{2}-\frac{2}{3}x+\frac{1}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{3}\right)^{2}}=\sqrt{\frac{28}{9}}
Take the square root of both sides of the equation.
x-\frac{1}{3}=\frac{2\sqrt{7}}{3} x-\frac{1}{3}=-\frac{2\sqrt{7}}{3}
Simplify.
x=\frac{2\sqrt{7}+1}{3} x=\frac{1-2\sqrt{7}}{3}
Add \frac{1}{3} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}