Factor
\left(3x-5\right)\left(x+1\right)
Evaluate
\left(3x-5\right)\left(x+1\right)
Graph
Share
Copied to clipboard
a+b=-2 ab=3\left(-5\right)=-15
Factor the expression by grouping. First, the expression needs to be rewritten as 3x^{2}+ax+bx-5. To find a and b, set up a system to be solved.
1,-15 3,-5
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -15.
1-15=-14 3-5=-2
Calculate the sum for each pair.
a=-5 b=3
The solution is the pair that gives sum -2.
\left(3x^{2}-5x\right)+\left(3x-5\right)
Rewrite 3x^{2}-2x-5 as \left(3x^{2}-5x\right)+\left(3x-5\right).
x\left(3x-5\right)+3x-5
Factor out x in 3x^{2}-5x.
\left(3x-5\right)\left(x+1\right)
Factor out common term 3x-5 by using distributive property.
3x^{2}-2x-5=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\times 3\left(-5\right)}}{2\times 3}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-2\right)±\sqrt{4-4\times 3\left(-5\right)}}{2\times 3}
Square -2.
x=\frac{-\left(-2\right)±\sqrt{4-12\left(-5\right)}}{2\times 3}
Multiply -4 times 3.
x=\frac{-\left(-2\right)±\sqrt{4+60}}{2\times 3}
Multiply -12 times -5.
x=\frac{-\left(-2\right)±\sqrt{64}}{2\times 3}
Add 4 to 60.
x=\frac{-\left(-2\right)±8}{2\times 3}
Take the square root of 64.
x=\frac{2±8}{2\times 3}
The opposite of -2 is 2.
x=\frac{2±8}{6}
Multiply 2 times 3.
x=\frac{10}{6}
Now solve the equation x=\frac{2±8}{6} when ± is plus. Add 2 to 8.
x=\frac{5}{3}
Reduce the fraction \frac{10}{6} to lowest terms by extracting and canceling out 2.
x=-\frac{6}{6}
Now solve the equation x=\frac{2±8}{6} when ± is minus. Subtract 8 from 2.
x=-1
Divide -6 by 6.
3x^{2}-2x-5=3\left(x-\frac{5}{3}\right)\left(x-\left(-1\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{5}{3} for x_{1} and -1 for x_{2}.
3x^{2}-2x-5=3\left(x-\frac{5}{3}\right)\left(x+1\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
3x^{2}-2x-5=3\times \frac{3x-5}{3}\left(x+1\right)
Subtract \frac{5}{3} from x by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
3x^{2}-2x-5=\left(3x-5\right)\left(x+1\right)
Cancel out 3, the greatest common factor in 3 and 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}