Solve for x
x = \frac{\sqrt{34} + 10}{3} \approx 5.276983965
x = \frac{10 - \sqrt{34}}{3} \approx 1.389682702
Graph
Share
Copied to clipboard
3x^{2}-20x+22=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-20\right)±\sqrt{\left(-20\right)^{2}-4\times 3\times 22}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, -20 for b, and 22 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-20\right)±\sqrt{400-4\times 3\times 22}}{2\times 3}
Square -20.
x=\frac{-\left(-20\right)±\sqrt{400-12\times 22}}{2\times 3}
Multiply -4 times 3.
x=\frac{-\left(-20\right)±\sqrt{400-264}}{2\times 3}
Multiply -12 times 22.
x=\frac{-\left(-20\right)±\sqrt{136}}{2\times 3}
Add 400 to -264.
x=\frac{-\left(-20\right)±2\sqrt{34}}{2\times 3}
Take the square root of 136.
x=\frac{20±2\sqrt{34}}{2\times 3}
The opposite of -20 is 20.
x=\frac{20±2\sqrt{34}}{6}
Multiply 2 times 3.
x=\frac{2\sqrt{34}+20}{6}
Now solve the equation x=\frac{20±2\sqrt{34}}{6} when ± is plus. Add 20 to 2\sqrt{34}.
x=\frac{\sqrt{34}+10}{3}
Divide 20+2\sqrt{34} by 6.
x=\frac{20-2\sqrt{34}}{6}
Now solve the equation x=\frac{20±2\sqrt{34}}{6} when ± is minus. Subtract 2\sqrt{34} from 20.
x=\frac{10-\sqrt{34}}{3}
Divide 20-2\sqrt{34} by 6.
x=\frac{\sqrt{34}+10}{3} x=\frac{10-\sqrt{34}}{3}
The equation is now solved.
3x^{2}-20x+22=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
3x^{2}-20x+22-22=-22
Subtract 22 from both sides of the equation.
3x^{2}-20x=-22
Subtracting 22 from itself leaves 0.
\frac{3x^{2}-20x}{3}=-\frac{22}{3}
Divide both sides by 3.
x^{2}-\frac{20}{3}x=-\frac{22}{3}
Dividing by 3 undoes the multiplication by 3.
x^{2}-\frac{20}{3}x+\left(-\frac{10}{3}\right)^{2}=-\frac{22}{3}+\left(-\frac{10}{3}\right)^{2}
Divide -\frac{20}{3}, the coefficient of the x term, by 2 to get -\frac{10}{3}. Then add the square of -\frac{10}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{20}{3}x+\frac{100}{9}=-\frac{22}{3}+\frac{100}{9}
Square -\frac{10}{3} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{20}{3}x+\frac{100}{9}=\frac{34}{9}
Add -\frac{22}{3} to \frac{100}{9} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{10}{3}\right)^{2}=\frac{34}{9}
Factor x^{2}-\frac{20}{3}x+\frac{100}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{10}{3}\right)^{2}}=\sqrt{\frac{34}{9}}
Take the square root of both sides of the equation.
x-\frac{10}{3}=\frac{\sqrt{34}}{3} x-\frac{10}{3}=-\frac{\sqrt{34}}{3}
Simplify.
x=\frac{\sqrt{34}+10}{3} x=\frac{10-\sqrt{34}}{3}
Add \frac{10}{3} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}