Solve for x (complex solution)
x=\frac{5+i\sqrt{23}}{12}\approx 0.416666667+0.399652627i
x=\frac{-i\sqrt{23}+5}{12}\approx 0.416666667-0.399652627i
Graph
Share
Copied to clipboard
3x^{2}-2.5x+1=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-2.5\right)±\sqrt{\left(-2.5\right)^{2}-4\times 3}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, -2.5 for b, and 1 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-2.5\right)±\sqrt{6.25-4\times 3}}{2\times 3}
Square -2.5 by squaring both the numerator and the denominator of the fraction.
x=\frac{-\left(-2.5\right)±\sqrt{6.25-12}}{2\times 3}
Multiply -4 times 3.
x=\frac{-\left(-2.5\right)±\sqrt{-5.75}}{2\times 3}
Add 6.25 to -12.
x=\frac{-\left(-2.5\right)±\frac{\sqrt{23}i}{2}}{2\times 3}
Take the square root of -5.75.
x=\frac{2.5±\frac{\sqrt{23}i}{2}}{2\times 3}
The opposite of -2.5 is 2.5.
x=\frac{2.5±\frac{\sqrt{23}i}{2}}{6}
Multiply 2 times 3.
x=\frac{5+\sqrt{23}i}{2\times 6}
Now solve the equation x=\frac{2.5±\frac{\sqrt{23}i}{2}}{6} when ± is plus. Add 2.5 to \frac{i\sqrt{23}}{2}.
x=\frac{5+\sqrt{23}i}{12}
Divide \frac{5+i\sqrt{23}}{2} by 6.
x=\frac{-\sqrt{23}i+5}{2\times 6}
Now solve the equation x=\frac{2.5±\frac{\sqrt{23}i}{2}}{6} when ± is minus. Subtract \frac{i\sqrt{23}}{2} from 2.5.
x=\frac{-\sqrt{23}i+5}{12}
Divide \frac{5-i\sqrt{23}}{2} by 6.
x=\frac{5+\sqrt{23}i}{12} x=\frac{-\sqrt{23}i+5}{12}
The equation is now solved.
3x^{2}-2.5x+1=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
3x^{2}-2.5x+1-1=-1
Subtract 1 from both sides of the equation.
3x^{2}-2.5x=-1
Subtracting 1 from itself leaves 0.
\frac{3x^{2}-2.5x}{3}=-\frac{1}{3}
Divide both sides by 3.
x^{2}+\left(-\frac{2.5}{3}\right)x=-\frac{1}{3}
Dividing by 3 undoes the multiplication by 3.
x^{2}-\frac{5}{6}x=-\frac{1}{3}
Divide -2.5 by 3.
x^{2}-\frac{5}{6}x+\left(-\frac{5}{12}\right)^{2}=-\frac{1}{3}+\left(-\frac{5}{12}\right)^{2}
Divide -\frac{5}{6}, the coefficient of the x term, by 2 to get -\frac{5}{12}. Then add the square of -\frac{5}{12} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{5}{6}x+\frac{25}{144}=-\frac{1}{3}+\frac{25}{144}
Square -\frac{5}{12} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{5}{6}x+\frac{25}{144}=-\frac{23}{144}
Add -\frac{1}{3} to \frac{25}{144} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{5}{12}\right)^{2}=-\frac{23}{144}
Factor x^{2}-\frac{5}{6}x+\frac{25}{144}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{5}{12}\right)^{2}}=\sqrt{-\frac{23}{144}}
Take the square root of both sides of the equation.
x-\frac{5}{12}=\frac{\sqrt{23}i}{12} x-\frac{5}{12}=-\frac{\sqrt{23}i}{12}
Simplify.
x=\frac{5+\sqrt{23}i}{12} x=\frac{-\sqrt{23}i+5}{12}
Add \frac{5}{12} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}