Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

3x^{2}-17x+15=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-17\right)±\sqrt{\left(-17\right)^{2}-4\times 3\times 15}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, -17 for b, and 15 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-17\right)±\sqrt{289-4\times 3\times 15}}{2\times 3}
Square -17.
x=\frac{-\left(-17\right)±\sqrt{289-12\times 15}}{2\times 3}
Multiply -4 times 3.
x=\frac{-\left(-17\right)±\sqrt{289-180}}{2\times 3}
Multiply -12 times 15.
x=\frac{-\left(-17\right)±\sqrt{109}}{2\times 3}
Add 289 to -180.
x=\frac{17±\sqrt{109}}{2\times 3}
The opposite of -17 is 17.
x=\frac{17±\sqrt{109}}{6}
Multiply 2 times 3.
x=\frac{\sqrt{109}+17}{6}
Now solve the equation x=\frac{17±\sqrt{109}}{6} when ± is plus. Add 17 to \sqrt{109}.
x=\frac{17-\sqrt{109}}{6}
Now solve the equation x=\frac{17±\sqrt{109}}{6} when ± is minus. Subtract \sqrt{109} from 17.
x=\frac{\sqrt{109}+17}{6} x=\frac{17-\sqrt{109}}{6}
The equation is now solved.
3x^{2}-17x+15=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
3x^{2}-17x+15-15=-15
Subtract 15 from both sides of the equation.
3x^{2}-17x=-15
Subtracting 15 from itself leaves 0.
\frac{3x^{2}-17x}{3}=-\frac{15}{3}
Divide both sides by 3.
x^{2}-\frac{17}{3}x=-\frac{15}{3}
Dividing by 3 undoes the multiplication by 3.
x^{2}-\frac{17}{3}x=-5
Divide -15 by 3.
x^{2}-\frac{17}{3}x+\left(-\frac{17}{6}\right)^{2}=-5+\left(-\frac{17}{6}\right)^{2}
Divide -\frac{17}{3}, the coefficient of the x term, by 2 to get -\frac{17}{6}. Then add the square of -\frac{17}{6} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{17}{3}x+\frac{289}{36}=-5+\frac{289}{36}
Square -\frac{17}{6} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{17}{3}x+\frac{289}{36}=\frac{109}{36}
Add -5 to \frac{289}{36}.
\left(x-\frac{17}{6}\right)^{2}=\frac{109}{36}
Factor x^{2}-\frac{17}{3}x+\frac{289}{36}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{17}{6}\right)^{2}}=\sqrt{\frac{109}{36}}
Take the square root of both sides of the equation.
x-\frac{17}{6}=\frac{\sqrt{109}}{6} x-\frac{17}{6}=-\frac{\sqrt{109}}{6}
Simplify.
x=\frac{\sqrt{109}+17}{6} x=\frac{17-\sqrt{109}}{6}
Add \frac{17}{6} to both sides of the equation.