Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

3x^{2}-15x=5
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
3x^{2}-15x-5=5-5
Subtract 5 from both sides of the equation.
3x^{2}-15x-5=0
Subtracting 5 from itself leaves 0.
x=\frac{-\left(-15\right)±\sqrt{\left(-15\right)^{2}-4\times 3\left(-5\right)}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, -15 for b, and -5 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-15\right)±\sqrt{225-4\times 3\left(-5\right)}}{2\times 3}
Square -15.
x=\frac{-\left(-15\right)±\sqrt{225-12\left(-5\right)}}{2\times 3}
Multiply -4 times 3.
x=\frac{-\left(-15\right)±\sqrt{225+60}}{2\times 3}
Multiply -12 times -5.
x=\frac{-\left(-15\right)±\sqrt{285}}{2\times 3}
Add 225 to 60.
x=\frac{15±\sqrt{285}}{2\times 3}
The opposite of -15 is 15.
x=\frac{15±\sqrt{285}}{6}
Multiply 2 times 3.
x=\frac{\sqrt{285}+15}{6}
Now solve the equation x=\frac{15±\sqrt{285}}{6} when ± is plus. Add 15 to \sqrt{285}.
x=\frac{\sqrt{285}}{6}+\frac{5}{2}
Divide 15+\sqrt{285} by 6.
x=\frac{15-\sqrt{285}}{6}
Now solve the equation x=\frac{15±\sqrt{285}}{6} when ± is minus. Subtract \sqrt{285} from 15.
x=-\frac{\sqrt{285}}{6}+\frac{5}{2}
Divide 15-\sqrt{285} by 6.
x=\frac{\sqrt{285}}{6}+\frac{5}{2} x=-\frac{\sqrt{285}}{6}+\frac{5}{2}
The equation is now solved.
3x^{2}-15x=5
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{3x^{2}-15x}{3}=\frac{5}{3}
Divide both sides by 3.
x^{2}+\left(-\frac{15}{3}\right)x=\frac{5}{3}
Dividing by 3 undoes the multiplication by 3.
x^{2}-5x=\frac{5}{3}
Divide -15 by 3.
x^{2}-5x+\left(-\frac{5}{2}\right)^{2}=\frac{5}{3}+\left(-\frac{5}{2}\right)^{2}
Divide -5, the coefficient of the x term, by 2 to get -\frac{5}{2}. Then add the square of -\frac{5}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-5x+\frac{25}{4}=\frac{5}{3}+\frac{25}{4}
Square -\frac{5}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-5x+\frac{25}{4}=\frac{95}{12}
Add \frac{5}{3} to \frac{25}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{5}{2}\right)^{2}=\frac{95}{12}
Factor x^{2}-5x+\frac{25}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{5}{2}\right)^{2}}=\sqrt{\frac{95}{12}}
Take the square root of both sides of the equation.
x-\frac{5}{2}=\frac{\sqrt{285}}{6} x-\frac{5}{2}=-\frac{\sqrt{285}}{6}
Simplify.
x=\frac{\sqrt{285}}{6}+\frac{5}{2} x=-\frac{\sqrt{285}}{6}+\frac{5}{2}
Add \frac{5}{2} to both sides of the equation.