Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

3x^{2}-12x+11=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}-4\times 3\times 11}}{2\times 3}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-12\right)±\sqrt{144-4\times 3\times 11}}{2\times 3}
Square -12.
x=\frac{-\left(-12\right)±\sqrt{144-12\times 11}}{2\times 3}
Multiply -4 times 3.
x=\frac{-\left(-12\right)±\sqrt{144-132}}{2\times 3}
Multiply -12 times 11.
x=\frac{-\left(-12\right)±\sqrt{12}}{2\times 3}
Add 144 to -132.
x=\frac{-\left(-12\right)±2\sqrt{3}}{2\times 3}
Take the square root of 12.
x=\frac{12±2\sqrt{3}}{2\times 3}
The opposite of -12 is 12.
x=\frac{12±2\sqrt{3}}{6}
Multiply 2 times 3.
x=\frac{2\sqrt{3}+12}{6}
Now solve the equation x=\frac{12±2\sqrt{3}}{6} when ± is plus. Add 12 to 2\sqrt{3}.
x=\frac{\sqrt{3}}{3}+2
Divide 12+2\sqrt{3} by 6.
x=\frac{12-2\sqrt{3}}{6}
Now solve the equation x=\frac{12±2\sqrt{3}}{6} when ± is minus. Subtract 2\sqrt{3} from 12.
x=-\frac{\sqrt{3}}{3}+2
Divide 12-2\sqrt{3} by 6.
3x^{2}-12x+11=3\left(x-\left(\frac{\sqrt{3}}{3}+2\right)\right)\left(x-\left(-\frac{\sqrt{3}}{3}+2\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 2+\frac{\sqrt{3}}{3} for x_{1} and 2-\frac{\sqrt{3}}{3} for x_{2}.