Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

3x^{2}-11x-6=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-11\right)±\sqrt{\left(-11\right)^{2}-4\times 3\left(-6\right)}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, -11 for b, and -6 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-11\right)±\sqrt{121-4\times 3\left(-6\right)}}{2\times 3}
Square -11.
x=\frac{-\left(-11\right)±\sqrt{121-12\left(-6\right)}}{2\times 3}
Multiply -4 times 3.
x=\frac{-\left(-11\right)±\sqrt{121+72}}{2\times 3}
Multiply -12 times -6.
x=\frac{-\left(-11\right)±\sqrt{193}}{2\times 3}
Add 121 to 72.
x=\frac{11±\sqrt{193}}{2\times 3}
The opposite of -11 is 11.
x=\frac{11±\sqrt{193}}{6}
Multiply 2 times 3.
x=\frac{\sqrt{193}+11}{6}
Now solve the equation x=\frac{11±\sqrt{193}}{6} when ± is plus. Add 11 to \sqrt{193}.
x=\frac{11-\sqrt{193}}{6}
Now solve the equation x=\frac{11±\sqrt{193}}{6} when ± is minus. Subtract \sqrt{193} from 11.
x=\frac{\sqrt{193}+11}{6} x=\frac{11-\sqrt{193}}{6}
The equation is now solved.
3x^{2}-11x-6=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
3x^{2}-11x-6-\left(-6\right)=-\left(-6\right)
Add 6 to both sides of the equation.
3x^{2}-11x=-\left(-6\right)
Subtracting -6 from itself leaves 0.
3x^{2}-11x=6
Subtract -6 from 0.
\frac{3x^{2}-11x}{3}=\frac{6}{3}
Divide both sides by 3.
x^{2}-\frac{11}{3}x=\frac{6}{3}
Dividing by 3 undoes the multiplication by 3.
x^{2}-\frac{11}{3}x=2
Divide 6 by 3.
x^{2}-\frac{11}{3}x+\left(-\frac{11}{6}\right)^{2}=2+\left(-\frac{11}{6}\right)^{2}
Divide -\frac{11}{3}, the coefficient of the x term, by 2 to get -\frac{11}{6}. Then add the square of -\frac{11}{6} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{11}{3}x+\frac{121}{36}=2+\frac{121}{36}
Square -\frac{11}{6} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{11}{3}x+\frac{121}{36}=\frac{193}{36}
Add 2 to \frac{121}{36}.
\left(x-\frac{11}{6}\right)^{2}=\frac{193}{36}
Factor x^{2}-\frac{11}{3}x+\frac{121}{36}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{11}{6}\right)^{2}}=\sqrt{\frac{193}{36}}
Take the square root of both sides of the equation.
x-\frac{11}{6}=\frac{\sqrt{193}}{6} x-\frac{11}{6}=-\frac{\sqrt{193}}{6}
Simplify.
x=\frac{\sqrt{193}+11}{6} x=\frac{11-\sqrt{193}}{6}
Add \frac{11}{6} to both sides of the equation.