Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

3x^{2}-10x+58=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-10\right)±\sqrt{\left(-10\right)^{2}-4\times 3\times 58}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, -10 for b, and 58 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-10\right)±\sqrt{100-4\times 3\times 58}}{2\times 3}
Square -10.
x=\frac{-\left(-10\right)±\sqrt{100-12\times 58}}{2\times 3}
Multiply -4 times 3.
x=\frac{-\left(-10\right)±\sqrt{100-696}}{2\times 3}
Multiply -12 times 58.
x=\frac{-\left(-10\right)±\sqrt{-596}}{2\times 3}
Add 100 to -696.
x=\frac{-\left(-10\right)±2\sqrt{149}i}{2\times 3}
Take the square root of -596.
x=\frac{10±2\sqrt{149}i}{2\times 3}
The opposite of -10 is 10.
x=\frac{10±2\sqrt{149}i}{6}
Multiply 2 times 3.
x=\frac{10+2\sqrt{149}i}{6}
Now solve the equation x=\frac{10±2\sqrt{149}i}{6} when ± is plus. Add 10 to 2i\sqrt{149}.
x=\frac{5+\sqrt{149}i}{3}
Divide 10+2i\sqrt{149} by 6.
x=\frac{-2\sqrt{149}i+10}{6}
Now solve the equation x=\frac{10±2\sqrt{149}i}{6} when ± is minus. Subtract 2i\sqrt{149} from 10.
x=\frac{-\sqrt{149}i+5}{3}
Divide 10-2i\sqrt{149} by 6.
x=\frac{5+\sqrt{149}i}{3} x=\frac{-\sqrt{149}i+5}{3}
The equation is now solved.
3x^{2}-10x+58=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
3x^{2}-10x+58-58=-58
Subtract 58 from both sides of the equation.
3x^{2}-10x=-58
Subtracting 58 from itself leaves 0.
\frac{3x^{2}-10x}{3}=-\frac{58}{3}
Divide both sides by 3.
x^{2}-\frac{10}{3}x=-\frac{58}{3}
Dividing by 3 undoes the multiplication by 3.
x^{2}-\frac{10}{3}x+\left(-\frac{5}{3}\right)^{2}=-\frac{58}{3}+\left(-\frac{5}{3}\right)^{2}
Divide -\frac{10}{3}, the coefficient of the x term, by 2 to get -\frac{5}{3}. Then add the square of -\frac{5}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{10}{3}x+\frac{25}{9}=-\frac{58}{3}+\frac{25}{9}
Square -\frac{5}{3} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{10}{3}x+\frac{25}{9}=-\frac{149}{9}
Add -\frac{58}{3} to \frac{25}{9} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{5}{3}\right)^{2}=-\frac{149}{9}
Factor x^{2}-\frac{10}{3}x+\frac{25}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{5}{3}\right)^{2}}=\sqrt{-\frac{149}{9}}
Take the square root of both sides of the equation.
x-\frac{5}{3}=\frac{\sqrt{149}i}{3} x-\frac{5}{3}=-\frac{\sqrt{149}i}{3}
Simplify.
x=\frac{5+\sqrt{149}i}{3} x=\frac{-\sqrt{149}i+5}{3}
Add \frac{5}{3} to both sides of the equation.