Solve for x
x=2
x=18
Graph
Share
Copied to clipboard
3x^{2}-\left(25-20x+4x^{2}\right)=11
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(5-2x\right)^{2}.
3x^{2}-25+20x-4x^{2}=11
To find the opposite of 25-20x+4x^{2}, find the opposite of each term.
-x^{2}-25+20x=11
Combine 3x^{2} and -4x^{2} to get -x^{2}.
-x^{2}-25+20x-11=0
Subtract 11 from both sides.
-x^{2}-36+20x=0
Subtract 11 from -25 to get -36.
-x^{2}+20x-36=0
Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=20 ab=-\left(-36\right)=36
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as -x^{2}+ax+bx-36. To find a and b, set up a system to be solved.
1,36 2,18 3,12 4,9 6,6
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. List all such integer pairs that give product 36.
1+36=37 2+18=20 3+12=15 4+9=13 6+6=12
Calculate the sum for each pair.
a=18 b=2
The solution is the pair that gives sum 20.
\left(-x^{2}+18x\right)+\left(2x-36\right)
Rewrite -x^{2}+20x-36 as \left(-x^{2}+18x\right)+\left(2x-36\right).
-x\left(x-18\right)+2\left(x-18\right)
Factor out -x in the first and 2 in the second group.
\left(x-18\right)\left(-x+2\right)
Factor out common term x-18 by using distributive property.
x=18 x=2
To find equation solutions, solve x-18=0 and -x+2=0.
3x^{2}-\left(25-20x+4x^{2}\right)=11
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(5-2x\right)^{2}.
3x^{2}-25+20x-4x^{2}=11
To find the opposite of 25-20x+4x^{2}, find the opposite of each term.
-x^{2}-25+20x=11
Combine 3x^{2} and -4x^{2} to get -x^{2}.
-x^{2}-25+20x-11=0
Subtract 11 from both sides.
-x^{2}-36+20x=0
Subtract 11 from -25 to get -36.
-x^{2}+20x-36=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-20±\sqrt{20^{2}-4\left(-1\right)\left(-36\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 20 for b, and -36 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-20±\sqrt{400-4\left(-1\right)\left(-36\right)}}{2\left(-1\right)}
Square 20.
x=\frac{-20±\sqrt{400+4\left(-36\right)}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-20±\sqrt{400-144}}{2\left(-1\right)}
Multiply 4 times -36.
x=\frac{-20±\sqrt{256}}{2\left(-1\right)}
Add 400 to -144.
x=\frac{-20±16}{2\left(-1\right)}
Take the square root of 256.
x=\frac{-20±16}{-2}
Multiply 2 times -1.
x=-\frac{4}{-2}
Now solve the equation x=\frac{-20±16}{-2} when ± is plus. Add -20 to 16.
x=2
Divide -4 by -2.
x=-\frac{36}{-2}
Now solve the equation x=\frac{-20±16}{-2} when ± is minus. Subtract 16 from -20.
x=18
Divide -36 by -2.
x=2 x=18
The equation is now solved.
3x^{2}-\left(25-20x+4x^{2}\right)=11
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(5-2x\right)^{2}.
3x^{2}-25+20x-4x^{2}=11
To find the opposite of 25-20x+4x^{2}, find the opposite of each term.
-x^{2}-25+20x=11
Combine 3x^{2} and -4x^{2} to get -x^{2}.
-x^{2}+20x=11+25
Add 25 to both sides.
-x^{2}+20x=36
Add 11 and 25 to get 36.
\frac{-x^{2}+20x}{-1}=\frac{36}{-1}
Divide both sides by -1.
x^{2}+\frac{20}{-1}x=\frac{36}{-1}
Dividing by -1 undoes the multiplication by -1.
x^{2}-20x=\frac{36}{-1}
Divide 20 by -1.
x^{2}-20x=-36
Divide 36 by -1.
x^{2}-20x+\left(-10\right)^{2}=-36+\left(-10\right)^{2}
Divide -20, the coefficient of the x term, by 2 to get -10. Then add the square of -10 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-20x+100=-36+100
Square -10.
x^{2}-20x+100=64
Add -36 to 100.
\left(x-10\right)^{2}=64
Factor x^{2}-20x+100. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-10\right)^{2}}=\sqrt{64}
Take the square root of both sides of the equation.
x-10=8 x-10=-8
Simplify.
x=18 x=2
Add 10 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}