Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

a+b=1 ab=3\left(-4\right)=-12
Factor the expression by grouping. First, the expression needs to be rewritten as 3x^{2}+ax+bx-4. To find a and b, set up a system to be solved.
-1,12 -2,6 -3,4
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -12.
-1+12=11 -2+6=4 -3+4=1
Calculate the sum for each pair.
a=-3 b=4
The solution is the pair that gives sum 1.
\left(3x^{2}-3x\right)+\left(4x-4\right)
Rewrite 3x^{2}+x-4 as \left(3x^{2}-3x\right)+\left(4x-4\right).
3x\left(x-1\right)+4\left(x-1\right)
Factor out 3x in the first and 4 in the second group.
\left(x-1\right)\left(3x+4\right)
Factor out common term x-1 by using distributive property.
3x^{2}+x-4=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-1±\sqrt{1^{2}-4\times 3\left(-4\right)}}{2\times 3}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-1±\sqrt{1-4\times 3\left(-4\right)}}{2\times 3}
Square 1.
x=\frac{-1±\sqrt{1-12\left(-4\right)}}{2\times 3}
Multiply -4 times 3.
x=\frac{-1±\sqrt{1+48}}{2\times 3}
Multiply -12 times -4.
x=\frac{-1±\sqrt{49}}{2\times 3}
Add 1 to 48.
x=\frac{-1±7}{2\times 3}
Take the square root of 49.
x=\frac{-1±7}{6}
Multiply 2 times 3.
x=\frac{6}{6}
Now solve the equation x=\frac{-1±7}{6} when ± is plus. Add -1 to 7.
x=1
Divide 6 by 6.
x=-\frac{8}{6}
Now solve the equation x=\frac{-1±7}{6} when ± is minus. Subtract 7 from -1.
x=-\frac{4}{3}
Reduce the fraction \frac{-8}{6} to lowest terms by extracting and canceling out 2.
3x^{2}+x-4=3\left(x-1\right)\left(x-\left(-\frac{4}{3}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 1 for x_{1} and -\frac{4}{3} for x_{2}.
3x^{2}+x-4=3\left(x-1\right)\left(x+\frac{4}{3}\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
3x^{2}+x-4=3\left(x-1\right)\times \frac{3x+4}{3}
Add \frac{4}{3} to x by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
3x^{2}+x-4=\left(x-1\right)\left(3x+4\right)
Cancel out 3, the greatest common factor in 3 and 3.