Solve for x
x = -\frac{10}{3} = -3\frac{1}{3} \approx -3.333333333
x=1
Graph
Share
Copied to clipboard
a+b=7 ab=3\left(-10\right)=-30
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 3x^{2}+ax+bx-10. To find a and b, set up a system to be solved.
-1,30 -2,15 -3,10 -5,6
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -30.
-1+30=29 -2+15=13 -3+10=7 -5+6=1
Calculate the sum for each pair.
a=-3 b=10
The solution is the pair that gives sum 7.
\left(3x^{2}-3x\right)+\left(10x-10\right)
Rewrite 3x^{2}+7x-10 as \left(3x^{2}-3x\right)+\left(10x-10\right).
3x\left(x-1\right)+10\left(x-1\right)
Factor out 3x in the first and 10 in the second group.
\left(x-1\right)\left(3x+10\right)
Factor out common term x-1 by using distributive property.
x=1 x=-\frac{10}{3}
To find equation solutions, solve x-1=0 and 3x+10=0.
3x^{2}+7x-10=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-7±\sqrt{7^{2}-4\times 3\left(-10\right)}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, 7 for b, and -10 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-7±\sqrt{49-4\times 3\left(-10\right)}}{2\times 3}
Square 7.
x=\frac{-7±\sqrt{49-12\left(-10\right)}}{2\times 3}
Multiply -4 times 3.
x=\frac{-7±\sqrt{49+120}}{2\times 3}
Multiply -12 times -10.
x=\frac{-7±\sqrt{169}}{2\times 3}
Add 49 to 120.
x=\frac{-7±13}{2\times 3}
Take the square root of 169.
x=\frac{-7±13}{6}
Multiply 2 times 3.
x=\frac{6}{6}
Now solve the equation x=\frac{-7±13}{6} when ± is plus. Add -7 to 13.
x=1
Divide 6 by 6.
x=-\frac{20}{6}
Now solve the equation x=\frac{-7±13}{6} when ± is minus. Subtract 13 from -7.
x=-\frac{10}{3}
Reduce the fraction \frac{-20}{6} to lowest terms by extracting and canceling out 2.
x=1 x=-\frac{10}{3}
The equation is now solved.
3x^{2}+7x-10=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
3x^{2}+7x-10-\left(-10\right)=-\left(-10\right)
Add 10 to both sides of the equation.
3x^{2}+7x=-\left(-10\right)
Subtracting -10 from itself leaves 0.
3x^{2}+7x=10
Subtract -10 from 0.
\frac{3x^{2}+7x}{3}=\frac{10}{3}
Divide both sides by 3.
x^{2}+\frac{7}{3}x=\frac{10}{3}
Dividing by 3 undoes the multiplication by 3.
x^{2}+\frac{7}{3}x+\left(\frac{7}{6}\right)^{2}=\frac{10}{3}+\left(\frac{7}{6}\right)^{2}
Divide \frac{7}{3}, the coefficient of the x term, by 2 to get \frac{7}{6}. Then add the square of \frac{7}{6} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{7}{3}x+\frac{49}{36}=\frac{10}{3}+\frac{49}{36}
Square \frac{7}{6} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{7}{3}x+\frac{49}{36}=\frac{169}{36}
Add \frac{10}{3} to \frac{49}{36} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{7}{6}\right)^{2}=\frac{169}{36}
Factor x^{2}+\frac{7}{3}x+\frac{49}{36}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{7}{6}\right)^{2}}=\sqrt{\frac{169}{36}}
Take the square root of both sides of the equation.
x+\frac{7}{6}=\frac{13}{6} x+\frac{7}{6}=-\frac{13}{6}
Simplify.
x=1 x=-\frac{10}{3}
Subtract \frac{7}{6} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}