Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

a+b=7 ab=3\times 2=6
Factor the expression by grouping. First, the expression needs to be rewritten as 3x^{2}+ax+bx+2. To find a and b, set up a system to be solved.
1,6 2,3
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. List all such integer pairs that give product 6.
1+6=7 2+3=5
Calculate the sum for each pair.
a=1 b=6
The solution is the pair that gives sum 7.
\left(3x^{2}+x\right)+\left(6x+2\right)
Rewrite 3x^{2}+7x+2 as \left(3x^{2}+x\right)+\left(6x+2\right).
x\left(3x+1\right)+2\left(3x+1\right)
Factor out x in the first and 2 in the second group.
\left(3x+1\right)\left(x+2\right)
Factor out common term 3x+1 by using distributive property.
3x^{2}+7x+2=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-7±\sqrt{7^{2}-4\times 3\times 2}}{2\times 3}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-7±\sqrt{49-4\times 3\times 2}}{2\times 3}
Square 7.
x=\frac{-7±\sqrt{49-12\times 2}}{2\times 3}
Multiply -4 times 3.
x=\frac{-7±\sqrt{49-24}}{2\times 3}
Multiply -12 times 2.
x=\frac{-7±\sqrt{25}}{2\times 3}
Add 49 to -24.
x=\frac{-7±5}{2\times 3}
Take the square root of 25.
x=\frac{-7±5}{6}
Multiply 2 times 3.
x=-\frac{2}{6}
Now solve the equation x=\frac{-7±5}{6} when ± is plus. Add -7 to 5.
x=-\frac{1}{3}
Reduce the fraction \frac{-2}{6} to lowest terms by extracting and canceling out 2.
x=-\frac{12}{6}
Now solve the equation x=\frac{-7±5}{6} when ± is minus. Subtract 5 from -7.
x=-2
Divide -12 by 6.
3x^{2}+7x+2=3\left(x-\left(-\frac{1}{3}\right)\right)\left(x-\left(-2\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute -\frac{1}{3} for x_{1} and -2 for x_{2}.
3x^{2}+7x+2=3\left(x+\frac{1}{3}\right)\left(x+2\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
3x^{2}+7x+2=3\times \frac{3x+1}{3}\left(x+2\right)
Add \frac{1}{3} to x by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
3x^{2}+7x+2=\left(3x+1\right)\left(x+2\right)
Cancel out 3, the greatest common factor in 3 and 3.