Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

3\left(x^{2}+2x-15\right)
Factor out 3.
a+b=2 ab=1\left(-15\right)=-15
Consider x^{2}+2x-15. Factor the expression by grouping. First, the expression needs to be rewritten as x^{2}+ax+bx-15. To find a and b, set up a system to be solved.
-1,15 -3,5
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -15.
-1+15=14 -3+5=2
Calculate the sum for each pair.
a=-3 b=5
The solution is the pair that gives sum 2.
\left(x^{2}-3x\right)+\left(5x-15\right)
Rewrite x^{2}+2x-15 as \left(x^{2}-3x\right)+\left(5x-15\right).
x\left(x-3\right)+5\left(x-3\right)
Factor out x in the first and 5 in the second group.
\left(x-3\right)\left(x+5\right)
Factor out common term x-3 by using distributive property.
3\left(x-3\right)\left(x+5\right)
Rewrite the complete factored expression.
3x^{2}+6x-45=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-6±\sqrt{6^{2}-4\times 3\left(-45\right)}}{2\times 3}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-6±\sqrt{36-4\times 3\left(-45\right)}}{2\times 3}
Square 6.
x=\frac{-6±\sqrt{36-12\left(-45\right)}}{2\times 3}
Multiply -4 times 3.
x=\frac{-6±\sqrt{36+540}}{2\times 3}
Multiply -12 times -45.
x=\frac{-6±\sqrt{576}}{2\times 3}
Add 36 to 540.
x=\frac{-6±24}{2\times 3}
Take the square root of 576.
x=\frac{-6±24}{6}
Multiply 2 times 3.
x=\frac{18}{6}
Now solve the equation x=\frac{-6±24}{6} when ± is plus. Add -6 to 24.
x=3
Divide 18 by 6.
x=-\frac{30}{6}
Now solve the equation x=\frac{-6±24}{6} when ± is minus. Subtract 24 from -6.
x=-5
Divide -30 by 6.
3x^{2}+6x-45=3\left(x-3\right)\left(x-\left(-5\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 3 for x_{1} and -5 for x_{2}.
3x^{2}+6x-45=3\left(x-3\right)\left(x+5\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.