Solve for x
x=\frac{2\sqrt{286}-31}{3}\approx 0.941023017
x=\frac{-2\sqrt{286}-31}{3}\approx -21.607689684
Graph
Share
Copied to clipboard
3x^{2}+62x=61
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
3x^{2}+62x-61=61-61
Subtract 61 from both sides of the equation.
3x^{2}+62x-61=0
Subtracting 61 from itself leaves 0.
x=\frac{-62±\sqrt{62^{2}-4\times 3\left(-61\right)}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, 62 for b, and -61 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-62±\sqrt{3844-4\times 3\left(-61\right)}}{2\times 3}
Square 62.
x=\frac{-62±\sqrt{3844-12\left(-61\right)}}{2\times 3}
Multiply -4 times 3.
x=\frac{-62±\sqrt{3844+732}}{2\times 3}
Multiply -12 times -61.
x=\frac{-62±\sqrt{4576}}{2\times 3}
Add 3844 to 732.
x=\frac{-62±4\sqrt{286}}{2\times 3}
Take the square root of 4576.
x=\frac{-62±4\sqrt{286}}{6}
Multiply 2 times 3.
x=\frac{4\sqrt{286}-62}{6}
Now solve the equation x=\frac{-62±4\sqrt{286}}{6} when ± is plus. Add -62 to 4\sqrt{286}.
x=\frac{2\sqrt{286}-31}{3}
Divide -62+4\sqrt{286} by 6.
x=\frac{-4\sqrt{286}-62}{6}
Now solve the equation x=\frac{-62±4\sqrt{286}}{6} when ± is minus. Subtract 4\sqrt{286} from -62.
x=\frac{-2\sqrt{286}-31}{3}
Divide -62-4\sqrt{286} by 6.
x=\frac{2\sqrt{286}-31}{3} x=\frac{-2\sqrt{286}-31}{3}
The equation is now solved.
3x^{2}+62x=61
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{3x^{2}+62x}{3}=\frac{61}{3}
Divide both sides by 3.
x^{2}+\frac{62}{3}x=\frac{61}{3}
Dividing by 3 undoes the multiplication by 3.
x^{2}+\frac{62}{3}x+\left(\frac{31}{3}\right)^{2}=\frac{61}{3}+\left(\frac{31}{3}\right)^{2}
Divide \frac{62}{3}, the coefficient of the x term, by 2 to get \frac{31}{3}. Then add the square of \frac{31}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{62}{3}x+\frac{961}{9}=\frac{61}{3}+\frac{961}{9}
Square \frac{31}{3} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{62}{3}x+\frac{961}{9}=\frac{1144}{9}
Add \frac{61}{3} to \frac{961}{9} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{31}{3}\right)^{2}=\frac{1144}{9}
Factor x^{2}+\frac{62}{3}x+\frac{961}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{31}{3}\right)^{2}}=\sqrt{\frac{1144}{9}}
Take the square root of both sides of the equation.
x+\frac{31}{3}=\frac{2\sqrt{286}}{3} x+\frac{31}{3}=-\frac{2\sqrt{286}}{3}
Simplify.
x=\frac{2\sqrt{286}-31}{3} x=\frac{-2\sqrt{286}-31}{3}
Subtract \frac{31}{3} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}