Solve for x (complex solution)
x=\frac{\sqrt{21}i}{3}+1\approx 1+1.527525232i
x=-\frac{\sqrt{21}i}{3}+1\approx 1-1.527525232i
Graph
Share
Copied to clipboard
3x^{2}+6-6x=-4
Subtract 6x from both sides.
3x^{2}+6-6x+4=0
Add 4 to both sides.
3x^{2}+10-6x=0
Add 6 and 4 to get 10.
3x^{2}-6x+10=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\times 3\times 10}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, -6 for b, and 10 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-6\right)±\sqrt{36-4\times 3\times 10}}{2\times 3}
Square -6.
x=\frac{-\left(-6\right)±\sqrt{36-12\times 10}}{2\times 3}
Multiply -4 times 3.
x=\frac{-\left(-6\right)±\sqrt{36-120}}{2\times 3}
Multiply -12 times 10.
x=\frac{-\left(-6\right)±\sqrt{-84}}{2\times 3}
Add 36 to -120.
x=\frac{-\left(-6\right)±2\sqrt{21}i}{2\times 3}
Take the square root of -84.
x=\frac{6±2\sqrt{21}i}{2\times 3}
The opposite of -6 is 6.
x=\frac{6±2\sqrt{21}i}{6}
Multiply 2 times 3.
x=\frac{6+2\sqrt{21}i}{6}
Now solve the equation x=\frac{6±2\sqrt{21}i}{6} when ± is plus. Add 6 to 2i\sqrt{21}.
x=\frac{\sqrt{21}i}{3}+1
Divide 6+2i\sqrt{21} by 6.
x=\frac{-2\sqrt{21}i+6}{6}
Now solve the equation x=\frac{6±2\sqrt{21}i}{6} when ± is minus. Subtract 2i\sqrt{21} from 6.
x=-\frac{\sqrt{21}i}{3}+1
Divide 6-2i\sqrt{21} by 6.
x=\frac{\sqrt{21}i}{3}+1 x=-\frac{\sqrt{21}i}{3}+1
The equation is now solved.
3x^{2}+6-6x=-4
Subtract 6x from both sides.
3x^{2}-6x=-4-6
Subtract 6 from both sides.
3x^{2}-6x=-10
Subtract 6 from -4 to get -10.
\frac{3x^{2}-6x}{3}=-\frac{10}{3}
Divide both sides by 3.
x^{2}+\left(-\frac{6}{3}\right)x=-\frac{10}{3}
Dividing by 3 undoes the multiplication by 3.
x^{2}-2x=-\frac{10}{3}
Divide -6 by 3.
x^{2}-2x+1=-\frac{10}{3}+1
Divide -2, the coefficient of the x term, by 2 to get -1. Then add the square of -1 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-2x+1=-\frac{7}{3}
Add -\frac{10}{3} to 1.
\left(x-1\right)^{2}=-\frac{7}{3}
Factor x^{2}-2x+1. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-1\right)^{2}}=\sqrt{-\frac{7}{3}}
Take the square root of both sides of the equation.
x-1=\frac{\sqrt{21}i}{3} x-1=-\frac{\sqrt{21}i}{3}
Simplify.
x=\frac{\sqrt{21}i}{3}+1 x=-\frac{\sqrt{21}i}{3}+1
Add 1 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}