Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

3x^{2}+5x=210
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
3x^{2}+5x-210=210-210
Subtract 210 from both sides of the equation.
3x^{2}+5x-210=0
Subtracting 210 from itself leaves 0.
x=\frac{-5±\sqrt{5^{2}-4\times 3\left(-210\right)}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, 5 for b, and -210 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-5±\sqrt{25-4\times 3\left(-210\right)}}{2\times 3}
Square 5.
x=\frac{-5±\sqrt{25-12\left(-210\right)}}{2\times 3}
Multiply -4 times 3.
x=\frac{-5±\sqrt{25+2520}}{2\times 3}
Multiply -12 times -210.
x=\frac{-5±\sqrt{2545}}{2\times 3}
Add 25 to 2520.
x=\frac{-5±\sqrt{2545}}{6}
Multiply 2 times 3.
x=\frac{\sqrt{2545}-5}{6}
Now solve the equation x=\frac{-5±\sqrt{2545}}{6} when ± is plus. Add -5 to \sqrt{2545}.
x=\frac{-\sqrt{2545}-5}{6}
Now solve the equation x=\frac{-5±\sqrt{2545}}{6} when ± is minus. Subtract \sqrt{2545} from -5.
x=\frac{\sqrt{2545}-5}{6} x=\frac{-\sqrt{2545}-5}{6}
The equation is now solved.
3x^{2}+5x=210
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{3x^{2}+5x}{3}=\frac{210}{3}
Divide both sides by 3.
x^{2}+\frac{5}{3}x=\frac{210}{3}
Dividing by 3 undoes the multiplication by 3.
x^{2}+\frac{5}{3}x=70
Divide 210 by 3.
x^{2}+\frac{5}{3}x+\left(\frac{5}{6}\right)^{2}=70+\left(\frac{5}{6}\right)^{2}
Divide \frac{5}{3}, the coefficient of the x term, by 2 to get \frac{5}{6}. Then add the square of \frac{5}{6} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{5}{3}x+\frac{25}{36}=70+\frac{25}{36}
Square \frac{5}{6} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{5}{3}x+\frac{25}{36}=\frac{2545}{36}
Add 70 to \frac{25}{36}.
\left(x+\frac{5}{6}\right)^{2}=\frac{2545}{36}
Factor x^{2}+\frac{5}{3}x+\frac{25}{36}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{5}{6}\right)^{2}}=\sqrt{\frac{2545}{36}}
Take the square root of both sides of the equation.
x+\frac{5}{6}=\frac{\sqrt{2545}}{6} x+\frac{5}{6}=-\frac{\sqrt{2545}}{6}
Simplify.
x=\frac{\sqrt{2545}-5}{6} x=\frac{-\sqrt{2545}-5}{6}
Subtract \frac{5}{6} from both sides of the equation.