Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

3x^{2}+5x+2=8
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
3x^{2}+5x+2-8=8-8
Subtract 8 from both sides of the equation.
3x^{2}+5x+2-8=0
Subtracting 8 from itself leaves 0.
3x^{2}+5x-6=0
Subtract 8 from 2.
x=\frac{-5±\sqrt{5^{2}-4\times 3\left(-6\right)}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, 5 for b, and -6 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-5±\sqrt{25-4\times 3\left(-6\right)}}{2\times 3}
Square 5.
x=\frac{-5±\sqrt{25-12\left(-6\right)}}{2\times 3}
Multiply -4 times 3.
x=\frac{-5±\sqrt{25+72}}{2\times 3}
Multiply -12 times -6.
x=\frac{-5±\sqrt{97}}{2\times 3}
Add 25 to 72.
x=\frac{-5±\sqrt{97}}{6}
Multiply 2 times 3.
x=\frac{\sqrt{97}-5}{6}
Now solve the equation x=\frac{-5±\sqrt{97}}{6} when ± is plus. Add -5 to \sqrt{97}.
x=\frac{-\sqrt{97}-5}{6}
Now solve the equation x=\frac{-5±\sqrt{97}}{6} when ± is minus. Subtract \sqrt{97} from -5.
x=\frac{\sqrt{97}-5}{6} x=\frac{-\sqrt{97}-5}{6}
The equation is now solved.
3x^{2}+5x+2=8
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
3x^{2}+5x+2-2=8-2
Subtract 2 from both sides of the equation.
3x^{2}+5x=8-2
Subtracting 2 from itself leaves 0.
3x^{2}+5x=6
Subtract 2 from 8.
\frac{3x^{2}+5x}{3}=\frac{6}{3}
Divide both sides by 3.
x^{2}+\frac{5}{3}x=\frac{6}{3}
Dividing by 3 undoes the multiplication by 3.
x^{2}+\frac{5}{3}x=2
Divide 6 by 3.
x^{2}+\frac{5}{3}x+\left(\frac{5}{6}\right)^{2}=2+\left(\frac{5}{6}\right)^{2}
Divide \frac{5}{3}, the coefficient of the x term, by 2 to get \frac{5}{6}. Then add the square of \frac{5}{6} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{5}{3}x+\frac{25}{36}=2+\frac{25}{36}
Square \frac{5}{6} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{5}{3}x+\frac{25}{36}=\frac{97}{36}
Add 2 to \frac{25}{36}.
\left(x+\frac{5}{6}\right)^{2}=\frac{97}{36}
Factor x^{2}+\frac{5}{3}x+\frac{25}{36}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{5}{6}\right)^{2}}=\sqrt{\frac{97}{36}}
Take the square root of both sides of the equation.
x+\frac{5}{6}=\frac{\sqrt{97}}{6} x+\frac{5}{6}=-\frac{\sqrt{97}}{6}
Simplify.
x=\frac{\sqrt{97}-5}{6} x=\frac{-\sqrt{97}-5}{6}
Subtract \frac{5}{6} from both sides of the equation.