Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

3x^{2}+56x+80=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-56±\sqrt{56^{2}-4\times 3\times 80}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, 56 for b, and 80 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-56±\sqrt{3136-4\times 3\times 80}}{2\times 3}
Square 56.
x=\frac{-56±\sqrt{3136-12\times 80}}{2\times 3}
Multiply -4 times 3.
x=\frac{-56±\sqrt{3136-960}}{2\times 3}
Multiply -12 times 80.
x=\frac{-56±\sqrt{2176}}{2\times 3}
Add 3136 to -960.
x=\frac{-56±8\sqrt{34}}{2\times 3}
Take the square root of 2176.
x=\frac{-56±8\sqrt{34}}{6}
Multiply 2 times 3.
x=\frac{8\sqrt{34}-56}{6}
Now solve the equation x=\frac{-56±8\sqrt{34}}{6} when ± is plus. Add -56 to 8\sqrt{34}.
x=\frac{4\sqrt{34}-28}{3}
Divide -56+8\sqrt{34} by 6.
x=\frac{-8\sqrt{34}-56}{6}
Now solve the equation x=\frac{-56±8\sqrt{34}}{6} when ± is minus. Subtract 8\sqrt{34} from -56.
x=\frac{-4\sqrt{34}-28}{3}
Divide -56-8\sqrt{34} by 6.
x=\frac{4\sqrt{34}-28}{3} x=\frac{-4\sqrt{34}-28}{3}
The equation is now solved.
3x^{2}+56x+80=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
3x^{2}+56x+80-80=-80
Subtract 80 from both sides of the equation.
3x^{2}+56x=-80
Subtracting 80 from itself leaves 0.
\frac{3x^{2}+56x}{3}=-\frac{80}{3}
Divide both sides by 3.
x^{2}+\frac{56}{3}x=-\frac{80}{3}
Dividing by 3 undoes the multiplication by 3.
x^{2}+\frac{56}{3}x+\left(\frac{28}{3}\right)^{2}=-\frac{80}{3}+\left(\frac{28}{3}\right)^{2}
Divide \frac{56}{3}, the coefficient of the x term, by 2 to get \frac{28}{3}. Then add the square of \frac{28}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{56}{3}x+\frac{784}{9}=-\frac{80}{3}+\frac{784}{9}
Square \frac{28}{3} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{56}{3}x+\frac{784}{9}=\frac{544}{9}
Add -\frac{80}{3} to \frac{784}{9} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{28}{3}\right)^{2}=\frac{544}{9}
Factor x^{2}+\frac{56}{3}x+\frac{784}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{28}{3}\right)^{2}}=\sqrt{\frac{544}{9}}
Take the square root of both sides of the equation.
x+\frac{28}{3}=\frac{4\sqrt{34}}{3} x+\frac{28}{3}=-\frac{4\sqrt{34}}{3}
Simplify.
x=\frac{4\sqrt{34}-28}{3} x=\frac{-4\sqrt{34}-28}{3}
Subtract \frac{28}{3} from both sides of the equation.