Solve for x
x = -\frac{500}{3} = -166\frac{2}{3} \approx -166.666666667
x=150
Graph
Share
Copied to clipboard
a+b=50 ab=3\left(-75000\right)=-225000
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 3x^{2}+ax+bx-75000. To find a and b, set up a system to be solved.
-1,225000 -2,112500 -3,75000 -4,56250 -5,45000 -6,37500 -8,28125 -9,25000 -10,22500 -12,18750 -15,15000 -18,12500 -20,11250 -24,9375 -25,9000 -30,7500 -36,6250 -40,5625 -45,5000 -50,4500 -60,3750 -72,3125 -75,3000 -90,2500 -100,2250 -120,1875 -125,1800 -150,1500 -180,1250 -200,1125 -225,1000 -250,900 -300,750 -360,625 -375,600 -450,500
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -225000.
-1+225000=224999 -2+112500=112498 -3+75000=74997 -4+56250=56246 -5+45000=44995 -6+37500=37494 -8+28125=28117 -9+25000=24991 -10+22500=22490 -12+18750=18738 -15+15000=14985 -18+12500=12482 -20+11250=11230 -24+9375=9351 -25+9000=8975 -30+7500=7470 -36+6250=6214 -40+5625=5585 -45+5000=4955 -50+4500=4450 -60+3750=3690 -72+3125=3053 -75+3000=2925 -90+2500=2410 -100+2250=2150 -120+1875=1755 -125+1800=1675 -150+1500=1350 -180+1250=1070 -200+1125=925 -225+1000=775 -250+900=650 -300+750=450 -360+625=265 -375+600=225 -450+500=50
Calculate the sum for each pair.
a=-450 b=500
The solution is the pair that gives sum 50.
\left(3x^{2}-450x\right)+\left(500x-75000\right)
Rewrite 3x^{2}+50x-75000 as \left(3x^{2}-450x\right)+\left(500x-75000\right).
3x\left(x-150\right)+500\left(x-150\right)
Factor out 3x in the first and 500 in the second group.
\left(x-150\right)\left(3x+500\right)
Factor out common term x-150 by using distributive property.
x=150 x=-\frac{500}{3}
To find equation solutions, solve x-150=0 and 3x+500=0.
3x^{2}+50x-75000=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-50±\sqrt{50^{2}-4\times 3\left(-75000\right)}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, 50 for b, and -75000 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-50±\sqrt{2500-4\times 3\left(-75000\right)}}{2\times 3}
Square 50.
x=\frac{-50±\sqrt{2500-12\left(-75000\right)}}{2\times 3}
Multiply -4 times 3.
x=\frac{-50±\sqrt{2500+900000}}{2\times 3}
Multiply -12 times -75000.
x=\frac{-50±\sqrt{902500}}{2\times 3}
Add 2500 to 900000.
x=\frac{-50±950}{2\times 3}
Take the square root of 902500.
x=\frac{-50±950}{6}
Multiply 2 times 3.
x=\frac{900}{6}
Now solve the equation x=\frac{-50±950}{6} when ± is plus. Add -50 to 950.
x=150
Divide 900 by 6.
x=-\frac{1000}{6}
Now solve the equation x=\frac{-50±950}{6} when ± is minus. Subtract 950 from -50.
x=-\frac{500}{3}
Reduce the fraction \frac{-1000}{6} to lowest terms by extracting and canceling out 2.
x=150 x=-\frac{500}{3}
The equation is now solved.
3x^{2}+50x-75000=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
3x^{2}+50x-75000-\left(-75000\right)=-\left(-75000\right)
Add 75000 to both sides of the equation.
3x^{2}+50x=-\left(-75000\right)
Subtracting -75000 from itself leaves 0.
3x^{2}+50x=75000
Subtract -75000 from 0.
\frac{3x^{2}+50x}{3}=\frac{75000}{3}
Divide both sides by 3.
x^{2}+\frac{50}{3}x=\frac{75000}{3}
Dividing by 3 undoes the multiplication by 3.
x^{2}+\frac{50}{3}x=25000
Divide 75000 by 3.
x^{2}+\frac{50}{3}x+\left(\frac{25}{3}\right)^{2}=25000+\left(\frac{25}{3}\right)^{2}
Divide \frac{50}{3}, the coefficient of the x term, by 2 to get \frac{25}{3}. Then add the square of \frac{25}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{50}{3}x+\frac{625}{9}=25000+\frac{625}{9}
Square \frac{25}{3} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{50}{3}x+\frac{625}{9}=\frac{225625}{9}
Add 25000 to \frac{625}{9}.
\left(x+\frac{25}{3}\right)^{2}=\frac{225625}{9}
Factor x^{2}+\frac{50}{3}x+\frac{625}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{25}{3}\right)^{2}}=\sqrt{\frac{225625}{9}}
Take the square root of both sides of the equation.
x+\frac{25}{3}=\frac{475}{3} x+\frac{25}{3}=-\frac{475}{3}
Simplify.
x=150 x=-\frac{500}{3}
Subtract \frac{25}{3} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}