Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

3x^{2}+45x-354=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-45±\sqrt{45^{2}-4\times 3\left(-354\right)}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, 45 for b, and -354 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-45±\sqrt{2025-4\times 3\left(-354\right)}}{2\times 3}
Square 45.
x=\frac{-45±\sqrt{2025-12\left(-354\right)}}{2\times 3}
Multiply -4 times 3.
x=\frac{-45±\sqrt{2025+4248}}{2\times 3}
Multiply -12 times -354.
x=\frac{-45±\sqrt{6273}}{2\times 3}
Add 2025 to 4248.
x=\frac{-45±3\sqrt{697}}{2\times 3}
Take the square root of 6273.
x=\frac{-45±3\sqrt{697}}{6}
Multiply 2 times 3.
x=\frac{3\sqrt{697}-45}{6}
Now solve the equation x=\frac{-45±3\sqrt{697}}{6} when ± is plus. Add -45 to 3\sqrt{697}.
x=\frac{\sqrt{697}-15}{2}
Divide -45+3\sqrt{697} by 6.
x=\frac{-3\sqrt{697}-45}{6}
Now solve the equation x=\frac{-45±3\sqrt{697}}{6} when ± is minus. Subtract 3\sqrt{697} from -45.
x=\frac{-\sqrt{697}-15}{2}
Divide -45-3\sqrt{697} by 6.
x=\frac{\sqrt{697}-15}{2} x=\frac{-\sqrt{697}-15}{2}
The equation is now solved.
3x^{2}+45x-354=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
3x^{2}+45x-354-\left(-354\right)=-\left(-354\right)
Add 354 to both sides of the equation.
3x^{2}+45x=-\left(-354\right)
Subtracting -354 from itself leaves 0.
3x^{2}+45x=354
Subtract -354 from 0.
\frac{3x^{2}+45x}{3}=\frac{354}{3}
Divide both sides by 3.
x^{2}+\frac{45}{3}x=\frac{354}{3}
Dividing by 3 undoes the multiplication by 3.
x^{2}+15x=\frac{354}{3}
Divide 45 by 3.
x^{2}+15x=118
Divide 354 by 3.
x^{2}+15x+\left(\frac{15}{2}\right)^{2}=118+\left(\frac{15}{2}\right)^{2}
Divide 15, the coefficient of the x term, by 2 to get \frac{15}{2}. Then add the square of \frac{15}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+15x+\frac{225}{4}=118+\frac{225}{4}
Square \frac{15}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}+15x+\frac{225}{4}=\frac{697}{4}
Add 118 to \frac{225}{4}.
\left(x+\frac{15}{2}\right)^{2}=\frac{697}{4}
Factor x^{2}+15x+\frac{225}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{15}{2}\right)^{2}}=\sqrt{\frac{697}{4}}
Take the square root of both sides of the equation.
x+\frac{15}{2}=\frac{\sqrt{697}}{2} x+\frac{15}{2}=-\frac{\sqrt{697}}{2}
Simplify.
x=\frac{\sqrt{697}-15}{2} x=\frac{-\sqrt{697}-15}{2}
Subtract \frac{15}{2} from both sides of the equation.