Factor
3x\left(x+1\right)
Evaluate
3x\left(x+1\right)
Graph
Share
Copied to clipboard
3\left(x^{2}+x\right)
Factor out 3.
x\left(x+1\right)
Consider x^{2}+x. Factor out x.
3x\left(x+1\right)
Rewrite the complete factored expression.
3x^{2}+3x=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-3±\sqrt{3^{2}}}{2\times 3}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-3±3}{2\times 3}
Take the square root of 3^{2}.
x=\frac{-3±3}{6}
Multiply 2 times 3.
x=\frac{0}{6}
Now solve the equation x=\frac{-3±3}{6} when ± is plus. Add -3 to 3.
x=0
Divide 0 by 6.
x=-\frac{6}{6}
Now solve the equation x=\frac{-3±3}{6} when ± is minus. Subtract 3 from -3.
x=-1
Divide -6 by 6.
3x^{2}+3x=3x\left(x-\left(-1\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 0 for x_{1} and -1 for x_{2}.
3x^{2}+3x=3x\left(x+1\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}