Solve for x
x=2\sqrt{5}-6\approx -1.527864045
x=-2\sqrt{5}-6\approx -10.472135955
Graph
Share
Copied to clipboard
3x^{2}+36x+48=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-36±\sqrt{36^{2}-4\times 3\times 48}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, 36 for b, and 48 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-36±\sqrt{1296-4\times 3\times 48}}{2\times 3}
Square 36.
x=\frac{-36±\sqrt{1296-12\times 48}}{2\times 3}
Multiply -4 times 3.
x=\frac{-36±\sqrt{1296-576}}{2\times 3}
Multiply -12 times 48.
x=\frac{-36±\sqrt{720}}{2\times 3}
Add 1296 to -576.
x=\frac{-36±12\sqrt{5}}{2\times 3}
Take the square root of 720.
x=\frac{-36±12\sqrt{5}}{6}
Multiply 2 times 3.
x=\frac{12\sqrt{5}-36}{6}
Now solve the equation x=\frac{-36±12\sqrt{5}}{6} when ± is plus. Add -36 to 12\sqrt{5}.
x=2\sqrt{5}-6
Divide -36+12\sqrt{5} by 6.
x=\frac{-12\sqrt{5}-36}{6}
Now solve the equation x=\frac{-36±12\sqrt{5}}{6} when ± is minus. Subtract 12\sqrt{5} from -36.
x=-2\sqrt{5}-6
Divide -36-12\sqrt{5} by 6.
x=2\sqrt{5}-6 x=-2\sqrt{5}-6
The equation is now solved.
3x^{2}+36x+48=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
3x^{2}+36x+48-48=-48
Subtract 48 from both sides of the equation.
3x^{2}+36x=-48
Subtracting 48 from itself leaves 0.
\frac{3x^{2}+36x}{3}=-\frac{48}{3}
Divide both sides by 3.
x^{2}+\frac{36}{3}x=-\frac{48}{3}
Dividing by 3 undoes the multiplication by 3.
x^{2}+12x=-\frac{48}{3}
Divide 36 by 3.
x^{2}+12x=-16
Divide -48 by 3.
x^{2}+12x+6^{2}=-16+6^{2}
Divide 12, the coefficient of the x term, by 2 to get 6. Then add the square of 6 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+12x+36=-16+36
Square 6.
x^{2}+12x+36=20
Add -16 to 36.
\left(x+6\right)^{2}=20
Factor x^{2}+12x+36. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+6\right)^{2}}=\sqrt{20}
Take the square root of both sides of the equation.
x+6=2\sqrt{5} x+6=-2\sqrt{5}
Simplify.
x=2\sqrt{5}-6 x=-2\sqrt{5}-6
Subtract 6 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}