Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

3\left(x^{2}+11x+30\right)
Factor out 3.
a+b=11 ab=1\times 30=30
Consider x^{2}+11x+30. Factor the expression by grouping. First, the expression needs to be rewritten as x^{2}+ax+bx+30. To find a and b, set up a system to be solved.
1,30 2,15 3,10 5,6
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. List all such integer pairs that give product 30.
1+30=31 2+15=17 3+10=13 5+6=11
Calculate the sum for each pair.
a=5 b=6
The solution is the pair that gives sum 11.
\left(x^{2}+5x\right)+\left(6x+30\right)
Rewrite x^{2}+11x+30 as \left(x^{2}+5x\right)+\left(6x+30\right).
x\left(x+5\right)+6\left(x+5\right)
Factor out x in the first and 6 in the second group.
\left(x+5\right)\left(x+6\right)
Factor out common term x+5 by using distributive property.
3\left(x+5\right)\left(x+6\right)
Rewrite the complete factored expression.
3x^{2}+33x+90=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-33±\sqrt{33^{2}-4\times 3\times 90}}{2\times 3}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-33±\sqrt{1089-4\times 3\times 90}}{2\times 3}
Square 33.
x=\frac{-33±\sqrt{1089-12\times 90}}{2\times 3}
Multiply -4 times 3.
x=\frac{-33±\sqrt{1089-1080}}{2\times 3}
Multiply -12 times 90.
x=\frac{-33±\sqrt{9}}{2\times 3}
Add 1089 to -1080.
x=\frac{-33±3}{2\times 3}
Take the square root of 9.
x=\frac{-33±3}{6}
Multiply 2 times 3.
x=-\frac{30}{6}
Now solve the equation x=\frac{-33±3}{6} when ± is plus. Add -33 to 3.
x=-5
Divide -30 by 6.
x=-\frac{36}{6}
Now solve the equation x=\frac{-33±3}{6} when ± is minus. Subtract 3 from -33.
x=-6
Divide -36 by 6.
3x^{2}+33x+90=3\left(x-\left(-5\right)\right)\left(x-\left(-6\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute -5 for x_{1} and -6 for x_{2}.
3x^{2}+33x+90=3\left(x+5\right)\left(x+6\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.