Solve for x
x = \frac{\sqrt{61} - 1}{3} \approx 2.270083225
x=\frac{-\sqrt{61}-1}{3}\approx -2.936749892
Graph
Share
Copied to clipboard
3x^{2}+2x-20=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-2±\sqrt{2^{2}-4\times 3\left(-20\right)}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, 2 for b, and -20 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2±\sqrt{4-4\times 3\left(-20\right)}}{2\times 3}
Square 2.
x=\frac{-2±\sqrt{4-12\left(-20\right)}}{2\times 3}
Multiply -4 times 3.
x=\frac{-2±\sqrt{4+240}}{2\times 3}
Multiply -12 times -20.
x=\frac{-2±\sqrt{244}}{2\times 3}
Add 4 to 240.
x=\frac{-2±2\sqrt{61}}{2\times 3}
Take the square root of 244.
x=\frac{-2±2\sqrt{61}}{6}
Multiply 2 times 3.
x=\frac{2\sqrt{61}-2}{6}
Now solve the equation x=\frac{-2±2\sqrt{61}}{6} when ± is plus. Add -2 to 2\sqrt{61}.
x=\frac{\sqrt{61}-1}{3}
Divide -2+2\sqrt{61} by 6.
x=\frac{-2\sqrt{61}-2}{6}
Now solve the equation x=\frac{-2±2\sqrt{61}}{6} when ± is minus. Subtract 2\sqrt{61} from -2.
x=\frac{-\sqrt{61}-1}{3}
Divide -2-2\sqrt{61} by 6.
x=\frac{\sqrt{61}-1}{3} x=\frac{-\sqrt{61}-1}{3}
The equation is now solved.
3x^{2}+2x-20=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
3x^{2}+2x-20-\left(-20\right)=-\left(-20\right)
Add 20 to both sides of the equation.
3x^{2}+2x=-\left(-20\right)
Subtracting -20 from itself leaves 0.
3x^{2}+2x=20
Subtract -20 from 0.
\frac{3x^{2}+2x}{3}=\frac{20}{3}
Divide both sides by 3.
x^{2}+\frac{2}{3}x=\frac{20}{3}
Dividing by 3 undoes the multiplication by 3.
x^{2}+\frac{2}{3}x+\left(\frac{1}{3}\right)^{2}=\frac{20}{3}+\left(\frac{1}{3}\right)^{2}
Divide \frac{2}{3}, the coefficient of the x term, by 2 to get \frac{1}{3}. Then add the square of \frac{1}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{2}{3}x+\frac{1}{9}=\frac{20}{3}+\frac{1}{9}
Square \frac{1}{3} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{2}{3}x+\frac{1}{9}=\frac{61}{9}
Add \frac{20}{3} to \frac{1}{9} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{1}{3}\right)^{2}=\frac{61}{9}
Factor x^{2}+\frac{2}{3}x+\frac{1}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{3}\right)^{2}}=\sqrt{\frac{61}{9}}
Take the square root of both sides of the equation.
x+\frac{1}{3}=\frac{\sqrt{61}}{3} x+\frac{1}{3}=-\frac{\sqrt{61}}{3}
Simplify.
x=\frac{\sqrt{61}-1}{3} x=\frac{-\sqrt{61}-1}{3}
Subtract \frac{1}{3} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}