Solve for x
x=-2
x = \frac{4}{3} = 1\frac{1}{3} \approx 1.333333333
Graph
Share
Copied to clipboard
3x^{2}+2x-8=0
Subtract 8 from both sides.
a+b=2 ab=3\left(-8\right)=-24
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 3x^{2}+ax+bx-8. To find a and b, set up a system to be solved.
-1,24 -2,12 -3,8 -4,6
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -24.
-1+24=23 -2+12=10 -3+8=5 -4+6=2
Calculate the sum for each pair.
a=-4 b=6
The solution is the pair that gives sum 2.
\left(3x^{2}-4x\right)+\left(6x-8\right)
Rewrite 3x^{2}+2x-8 as \left(3x^{2}-4x\right)+\left(6x-8\right).
x\left(3x-4\right)+2\left(3x-4\right)
Factor out x in the first and 2 in the second group.
\left(3x-4\right)\left(x+2\right)
Factor out common term 3x-4 by using distributive property.
x=\frac{4}{3} x=-2
To find equation solutions, solve 3x-4=0 and x+2=0.
3x^{2}+2x=8
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
3x^{2}+2x-8=8-8
Subtract 8 from both sides of the equation.
3x^{2}+2x-8=0
Subtracting 8 from itself leaves 0.
x=\frac{-2±\sqrt{2^{2}-4\times 3\left(-8\right)}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, 2 for b, and -8 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2±\sqrt{4-4\times 3\left(-8\right)}}{2\times 3}
Square 2.
x=\frac{-2±\sqrt{4-12\left(-8\right)}}{2\times 3}
Multiply -4 times 3.
x=\frac{-2±\sqrt{4+96}}{2\times 3}
Multiply -12 times -8.
x=\frac{-2±\sqrt{100}}{2\times 3}
Add 4 to 96.
x=\frac{-2±10}{2\times 3}
Take the square root of 100.
x=\frac{-2±10}{6}
Multiply 2 times 3.
x=\frac{8}{6}
Now solve the equation x=\frac{-2±10}{6} when ± is plus. Add -2 to 10.
x=\frac{4}{3}
Reduce the fraction \frac{8}{6} to lowest terms by extracting and canceling out 2.
x=-\frac{12}{6}
Now solve the equation x=\frac{-2±10}{6} when ± is minus. Subtract 10 from -2.
x=-2
Divide -12 by 6.
x=\frac{4}{3} x=-2
The equation is now solved.
3x^{2}+2x=8
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{3x^{2}+2x}{3}=\frac{8}{3}
Divide both sides by 3.
x^{2}+\frac{2}{3}x=\frac{8}{3}
Dividing by 3 undoes the multiplication by 3.
x^{2}+\frac{2}{3}x+\left(\frac{1}{3}\right)^{2}=\frac{8}{3}+\left(\frac{1}{3}\right)^{2}
Divide \frac{2}{3}, the coefficient of the x term, by 2 to get \frac{1}{3}. Then add the square of \frac{1}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{2}{3}x+\frac{1}{9}=\frac{8}{3}+\frac{1}{9}
Square \frac{1}{3} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{2}{3}x+\frac{1}{9}=\frac{25}{9}
Add \frac{8}{3} to \frac{1}{9} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{1}{3}\right)^{2}=\frac{25}{9}
Factor x^{2}+\frac{2}{3}x+\frac{1}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{3}\right)^{2}}=\sqrt{\frac{25}{9}}
Take the square root of both sides of the equation.
x+\frac{1}{3}=\frac{5}{3} x+\frac{1}{3}=-\frac{5}{3}
Simplify.
x=\frac{4}{3} x=-2
Subtract \frac{1}{3} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}