Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

3x^{2}+18x+18=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-18±\sqrt{18^{2}-4\times 3\times 18}}{2\times 3}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-18±\sqrt{324-4\times 3\times 18}}{2\times 3}
Square 18.
x=\frac{-18±\sqrt{324-12\times 18}}{2\times 3}
Multiply -4 times 3.
x=\frac{-18±\sqrt{324-216}}{2\times 3}
Multiply -12 times 18.
x=\frac{-18±\sqrt{108}}{2\times 3}
Add 324 to -216.
x=\frac{-18±6\sqrt{3}}{2\times 3}
Take the square root of 108.
x=\frac{-18±6\sqrt{3}}{6}
Multiply 2 times 3.
x=\frac{6\sqrt{3}-18}{6}
Now solve the equation x=\frac{-18±6\sqrt{3}}{6} when ± is plus. Add -18 to 6\sqrt{3}.
x=\sqrt{3}-3
Divide -18+6\sqrt{3} by 6.
x=\frac{-6\sqrt{3}-18}{6}
Now solve the equation x=\frac{-18±6\sqrt{3}}{6} when ± is minus. Subtract 6\sqrt{3} from -18.
x=-\sqrt{3}-3
Divide -18-6\sqrt{3} by 6.
3x^{2}+18x+18=3\left(x-\left(\sqrt{3}-3\right)\right)\left(x-\left(-\sqrt{3}-3\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute -3+\sqrt{3} for x_{1} and -3-\sqrt{3} for x_{2}.