Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

3x^{2}+18x+1=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-18±\sqrt{18^{2}-4\times 3}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, 18 for b, and 1 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-18±\sqrt{324-4\times 3}}{2\times 3}
Square 18.
x=\frac{-18±\sqrt{324-12}}{2\times 3}
Multiply -4 times 3.
x=\frac{-18±\sqrt{312}}{2\times 3}
Add 324 to -12.
x=\frac{-18±2\sqrt{78}}{2\times 3}
Take the square root of 312.
x=\frac{-18±2\sqrt{78}}{6}
Multiply 2 times 3.
x=\frac{2\sqrt{78}-18}{6}
Now solve the equation x=\frac{-18±2\sqrt{78}}{6} when ± is plus. Add -18 to 2\sqrt{78}.
x=\frac{\sqrt{78}}{3}-3
Divide -18+2\sqrt{78} by 6.
x=\frac{-2\sqrt{78}-18}{6}
Now solve the equation x=\frac{-18±2\sqrt{78}}{6} when ± is minus. Subtract 2\sqrt{78} from -18.
x=-\frac{\sqrt{78}}{3}-3
Divide -18-2\sqrt{78} by 6.
x=\frac{\sqrt{78}}{3}-3 x=-\frac{\sqrt{78}}{3}-3
The equation is now solved.
3x^{2}+18x+1=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
3x^{2}+18x+1-1=-1
Subtract 1 from both sides of the equation.
3x^{2}+18x=-1
Subtracting 1 from itself leaves 0.
\frac{3x^{2}+18x}{3}=-\frac{1}{3}
Divide both sides by 3.
x^{2}+\frac{18}{3}x=-\frac{1}{3}
Dividing by 3 undoes the multiplication by 3.
x^{2}+6x=-\frac{1}{3}
Divide 18 by 3.
x^{2}+6x+3^{2}=-\frac{1}{3}+3^{2}
Divide 6, the coefficient of the x term, by 2 to get 3. Then add the square of 3 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+6x+9=-\frac{1}{3}+9
Square 3.
x^{2}+6x+9=\frac{26}{3}
Add -\frac{1}{3} to 9.
\left(x+3\right)^{2}=\frac{26}{3}
Factor x^{2}+6x+9. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+3\right)^{2}}=\sqrt{\frac{26}{3}}
Take the square root of both sides of the equation.
x+3=\frac{\sqrt{78}}{3} x+3=-\frac{\sqrt{78}}{3}
Simplify.
x=\frac{\sqrt{78}}{3}-3 x=-\frac{\sqrt{78}}{3}-3
Subtract 3 from both sides of the equation.