Solve for x
x=\sqrt{43}+7\approx 13.557438524
x=7-\sqrt{43}\approx 0.442561476
Graph
Share
Copied to clipboard
3x^{2}+6+4x-18x-2x^{2}=0
Subtract 12 from 18 to get 6.
3x^{2}+6-14x-2x^{2}=0
Combine 4x and -18x to get -14x.
x^{2}+6-14x=0
Combine 3x^{2} and -2x^{2} to get x^{2}.
x^{2}-14x+6=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-14\right)±\sqrt{\left(-14\right)^{2}-4\times 6}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -14 for b, and 6 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-14\right)±\sqrt{196-4\times 6}}{2}
Square -14.
x=\frac{-\left(-14\right)±\sqrt{196-24}}{2}
Multiply -4 times 6.
x=\frac{-\left(-14\right)±\sqrt{172}}{2}
Add 196 to -24.
x=\frac{-\left(-14\right)±2\sqrt{43}}{2}
Take the square root of 172.
x=\frac{14±2\sqrt{43}}{2}
The opposite of -14 is 14.
x=\frac{2\sqrt{43}+14}{2}
Now solve the equation x=\frac{14±2\sqrt{43}}{2} when ± is plus. Add 14 to 2\sqrt{43}.
x=\sqrt{43}+7
Divide 14+2\sqrt{43} by 2.
x=\frac{14-2\sqrt{43}}{2}
Now solve the equation x=\frac{14±2\sqrt{43}}{2} when ± is minus. Subtract 2\sqrt{43} from 14.
x=7-\sqrt{43}
Divide 14-2\sqrt{43} by 2.
x=\sqrt{43}+7 x=7-\sqrt{43}
The equation is now solved.
3x^{2}+6+4x-18x-2x^{2}=0
Subtract 12 from 18 to get 6.
3x^{2}+6-14x-2x^{2}=0
Combine 4x and -18x to get -14x.
x^{2}+6-14x=0
Combine 3x^{2} and -2x^{2} to get x^{2}.
x^{2}-14x=-6
Subtract 6 from both sides. Anything subtracted from zero gives its negation.
x^{2}-14x+\left(-7\right)^{2}=-6+\left(-7\right)^{2}
Divide -14, the coefficient of the x term, by 2 to get -7. Then add the square of -7 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-14x+49=-6+49
Square -7.
x^{2}-14x+49=43
Add -6 to 49.
\left(x-7\right)^{2}=43
Factor x^{2}-14x+49. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-7\right)^{2}}=\sqrt{43}
Take the square root of both sides of the equation.
x-7=\sqrt{43} x-7=-\sqrt{43}
Simplify.
x=\sqrt{43}+7 x=7-\sqrt{43}
Add 7 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}