Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

3x^{2}+17x-2400=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-17±\sqrt{17^{2}-4\times 3\left(-2400\right)}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, 17 for b, and -2400 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-17±\sqrt{289-4\times 3\left(-2400\right)}}{2\times 3}
Square 17.
x=\frac{-17±\sqrt{289-12\left(-2400\right)}}{2\times 3}
Multiply -4 times 3.
x=\frac{-17±\sqrt{289+28800}}{2\times 3}
Multiply -12 times -2400.
x=\frac{-17±\sqrt{29089}}{2\times 3}
Add 289 to 28800.
x=\frac{-17±\sqrt{29089}}{6}
Multiply 2 times 3.
x=\frac{\sqrt{29089}-17}{6}
Now solve the equation x=\frac{-17±\sqrt{29089}}{6} when ± is plus. Add -17 to \sqrt{29089}.
x=\frac{-\sqrt{29089}-17}{6}
Now solve the equation x=\frac{-17±\sqrt{29089}}{6} when ± is minus. Subtract \sqrt{29089} from -17.
x=\frac{\sqrt{29089}-17}{6} x=\frac{-\sqrt{29089}-17}{6}
The equation is now solved.
3x^{2}+17x-2400=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
3x^{2}+17x-2400-\left(-2400\right)=-\left(-2400\right)
Add 2400 to both sides of the equation.
3x^{2}+17x=-\left(-2400\right)
Subtracting -2400 from itself leaves 0.
3x^{2}+17x=2400
Subtract -2400 from 0.
\frac{3x^{2}+17x}{3}=\frac{2400}{3}
Divide both sides by 3.
x^{2}+\frac{17}{3}x=\frac{2400}{3}
Dividing by 3 undoes the multiplication by 3.
x^{2}+\frac{17}{3}x=800
Divide 2400 by 3.
x^{2}+\frac{17}{3}x+\left(\frac{17}{6}\right)^{2}=800+\left(\frac{17}{6}\right)^{2}
Divide \frac{17}{3}, the coefficient of the x term, by 2 to get \frac{17}{6}. Then add the square of \frac{17}{6} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{17}{3}x+\frac{289}{36}=800+\frac{289}{36}
Square \frac{17}{6} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{17}{3}x+\frac{289}{36}=\frac{29089}{36}
Add 800 to \frac{289}{36}.
\left(x+\frac{17}{6}\right)^{2}=\frac{29089}{36}
Factor x^{2}+\frac{17}{3}x+\frac{289}{36}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{17}{6}\right)^{2}}=\sqrt{\frac{29089}{36}}
Take the square root of both sides of the equation.
x+\frac{17}{6}=\frac{\sqrt{29089}}{6} x+\frac{17}{6}=-\frac{\sqrt{29089}}{6}
Simplify.
x=\frac{\sqrt{29089}-17}{6} x=\frac{-\sqrt{29089}-17}{6}
Subtract \frac{17}{6} from both sides of the equation.