Solve for x
x = -\frac{17}{3} = -5\frac{2}{3} \approx -5.666666667
x=0
Graph
Share
Copied to clipboard
x\left(3x+17\right)=0
Factor out x.
x=0 x=-\frac{17}{3}
To find equation solutions, solve x=0 and 3x+17=0.
3x^{2}+17x=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-17±\sqrt{17^{2}}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, 17 for b, and 0 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-17±17}{2\times 3}
Take the square root of 17^{2}.
x=\frac{-17±17}{6}
Multiply 2 times 3.
x=\frac{0}{6}
Now solve the equation x=\frac{-17±17}{6} when ± is plus. Add -17 to 17.
x=0
Divide 0 by 6.
x=-\frac{34}{6}
Now solve the equation x=\frac{-17±17}{6} when ± is minus. Subtract 17 from -17.
x=-\frac{17}{3}
Reduce the fraction \frac{-34}{6} to lowest terms by extracting and canceling out 2.
x=0 x=-\frac{17}{3}
The equation is now solved.
3x^{2}+17x=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{3x^{2}+17x}{3}=\frac{0}{3}
Divide both sides by 3.
x^{2}+\frac{17}{3}x=\frac{0}{3}
Dividing by 3 undoes the multiplication by 3.
x^{2}+\frac{17}{3}x=0
Divide 0 by 3.
x^{2}+\frac{17}{3}x+\left(\frac{17}{6}\right)^{2}=\left(\frac{17}{6}\right)^{2}
Divide \frac{17}{3}, the coefficient of the x term, by 2 to get \frac{17}{6}. Then add the square of \frac{17}{6} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{17}{3}x+\frac{289}{36}=\frac{289}{36}
Square \frac{17}{6} by squaring both the numerator and the denominator of the fraction.
\left(x+\frac{17}{6}\right)^{2}=\frac{289}{36}
Factor x^{2}+\frac{17}{3}x+\frac{289}{36}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{17}{6}\right)^{2}}=\sqrt{\frac{289}{36}}
Take the square root of both sides of the equation.
x+\frac{17}{6}=\frac{17}{6} x+\frac{17}{6}=-\frac{17}{6}
Simplify.
x=0 x=-\frac{17}{3}
Subtract \frac{17}{6} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}