Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

3x^{2}+17x+3x=7
Add 3x to both sides.
3x^{2}+20x=7
Combine 17x and 3x to get 20x.
3x^{2}+20x-7=0
Subtract 7 from both sides.
a+b=20 ab=3\left(-7\right)=-21
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 3x^{2}+ax+bx-7. To find a and b, set up a system to be solved.
-1,21 -3,7
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -21.
-1+21=20 -3+7=4
Calculate the sum for each pair.
a=-1 b=21
The solution is the pair that gives sum 20.
\left(3x^{2}-x\right)+\left(21x-7\right)
Rewrite 3x^{2}+20x-7 as \left(3x^{2}-x\right)+\left(21x-7\right).
x\left(3x-1\right)+7\left(3x-1\right)
Factor out x in the first and 7 in the second group.
\left(3x-1\right)\left(x+7\right)
Factor out common term 3x-1 by using distributive property.
x=\frac{1}{3} x=-7
To find equation solutions, solve 3x-1=0 and x+7=0.
3x^{2}+17x+3x=7
Add 3x to both sides.
3x^{2}+20x=7
Combine 17x and 3x to get 20x.
3x^{2}+20x-7=0
Subtract 7 from both sides.
x=\frac{-20±\sqrt{20^{2}-4\times 3\left(-7\right)}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, 20 for b, and -7 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-20±\sqrt{400-4\times 3\left(-7\right)}}{2\times 3}
Square 20.
x=\frac{-20±\sqrt{400-12\left(-7\right)}}{2\times 3}
Multiply -4 times 3.
x=\frac{-20±\sqrt{400+84}}{2\times 3}
Multiply -12 times -7.
x=\frac{-20±\sqrt{484}}{2\times 3}
Add 400 to 84.
x=\frac{-20±22}{2\times 3}
Take the square root of 484.
x=\frac{-20±22}{6}
Multiply 2 times 3.
x=\frac{2}{6}
Now solve the equation x=\frac{-20±22}{6} when ± is plus. Add -20 to 22.
x=\frac{1}{3}
Reduce the fraction \frac{2}{6} to lowest terms by extracting and canceling out 2.
x=-\frac{42}{6}
Now solve the equation x=\frac{-20±22}{6} when ± is minus. Subtract 22 from -20.
x=-7
Divide -42 by 6.
x=\frac{1}{3} x=-7
The equation is now solved.
3x^{2}+17x+3x=7
Add 3x to both sides.
3x^{2}+20x=7
Combine 17x and 3x to get 20x.
\frac{3x^{2}+20x}{3}=\frac{7}{3}
Divide both sides by 3.
x^{2}+\frac{20}{3}x=\frac{7}{3}
Dividing by 3 undoes the multiplication by 3.
x^{2}+\frac{20}{3}x+\left(\frac{10}{3}\right)^{2}=\frac{7}{3}+\left(\frac{10}{3}\right)^{2}
Divide \frac{20}{3}, the coefficient of the x term, by 2 to get \frac{10}{3}. Then add the square of \frac{10}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{20}{3}x+\frac{100}{9}=\frac{7}{3}+\frac{100}{9}
Square \frac{10}{3} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{20}{3}x+\frac{100}{9}=\frac{121}{9}
Add \frac{7}{3} to \frac{100}{9} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{10}{3}\right)^{2}=\frac{121}{9}
Factor x^{2}+\frac{20}{3}x+\frac{100}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{10}{3}\right)^{2}}=\sqrt{\frac{121}{9}}
Take the square root of both sides of the equation.
x+\frac{10}{3}=\frac{11}{3} x+\frac{10}{3}=-\frac{11}{3}
Simplify.
x=\frac{1}{3} x=-7
Subtract \frac{10}{3} from both sides of the equation.