Factor
\left(x+3\right)\left(3x+7\right)
Evaluate
\left(x+3\right)\left(3x+7\right)
Graph
Share
Copied to clipboard
a+b=16 ab=3\times 21=63
Factor the expression by grouping. First, the expression needs to be rewritten as 3x^{2}+ax+bx+21. To find a and b, set up a system to be solved.
1,63 3,21 7,9
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. List all such integer pairs that give product 63.
1+63=64 3+21=24 7+9=16
Calculate the sum for each pair.
a=7 b=9
The solution is the pair that gives sum 16.
\left(3x^{2}+7x\right)+\left(9x+21\right)
Rewrite 3x^{2}+16x+21 as \left(3x^{2}+7x\right)+\left(9x+21\right).
x\left(3x+7\right)+3\left(3x+7\right)
Factor out x in the first and 3 in the second group.
\left(3x+7\right)\left(x+3\right)
Factor out common term 3x+7 by using distributive property.
3x^{2}+16x+21=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-16±\sqrt{16^{2}-4\times 3\times 21}}{2\times 3}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-16±\sqrt{256-4\times 3\times 21}}{2\times 3}
Square 16.
x=\frac{-16±\sqrt{256-12\times 21}}{2\times 3}
Multiply -4 times 3.
x=\frac{-16±\sqrt{256-252}}{2\times 3}
Multiply -12 times 21.
x=\frac{-16±\sqrt{4}}{2\times 3}
Add 256 to -252.
x=\frac{-16±2}{2\times 3}
Take the square root of 4.
x=\frac{-16±2}{6}
Multiply 2 times 3.
x=-\frac{14}{6}
Now solve the equation x=\frac{-16±2}{6} when ± is plus. Add -16 to 2.
x=-\frac{7}{3}
Reduce the fraction \frac{-14}{6} to lowest terms by extracting and canceling out 2.
x=-\frac{18}{6}
Now solve the equation x=\frac{-16±2}{6} when ± is minus. Subtract 2 from -16.
x=-3
Divide -18 by 6.
3x^{2}+16x+21=3\left(x-\left(-\frac{7}{3}\right)\right)\left(x-\left(-3\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute -\frac{7}{3} for x_{1} and -3 for x_{2}.
3x^{2}+16x+21=3\left(x+\frac{7}{3}\right)\left(x+3\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
3x^{2}+16x+21=3\times \frac{3x+7}{3}\left(x+3\right)
Add \frac{7}{3} to x by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
3x^{2}+16x+21=\left(3x+7\right)\left(x+3\right)
Cancel out 3, the greatest common factor in 3 and 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}