Solve for x (complex solution)
x=\sqrt{3}-2\approx -0.267949192
x=-\left(\sqrt{3}+2\right)\approx -3.732050808
Solve for x
x=\sqrt{3}-2\approx -0.267949192
x=-\sqrt{3}-2\approx -3.732050808
Graph
Share
Copied to clipboard
3x^{2}+12x+3=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-12±\sqrt{12^{2}-4\times 3\times 3}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, 12 for b, and 3 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-12±\sqrt{144-4\times 3\times 3}}{2\times 3}
Square 12.
x=\frac{-12±\sqrt{144-12\times 3}}{2\times 3}
Multiply -4 times 3.
x=\frac{-12±\sqrt{144-36}}{2\times 3}
Multiply -12 times 3.
x=\frac{-12±\sqrt{108}}{2\times 3}
Add 144 to -36.
x=\frac{-12±6\sqrt{3}}{2\times 3}
Take the square root of 108.
x=\frac{-12±6\sqrt{3}}{6}
Multiply 2 times 3.
x=\frac{6\sqrt{3}-12}{6}
Now solve the equation x=\frac{-12±6\sqrt{3}}{6} when ± is plus. Add -12 to 6\sqrt{3}.
x=\sqrt{3}-2
Divide -12+6\sqrt{3} by 6.
x=\frac{-6\sqrt{3}-12}{6}
Now solve the equation x=\frac{-12±6\sqrt{3}}{6} when ± is minus. Subtract 6\sqrt{3} from -12.
x=-\sqrt{3}-2
Divide -12-6\sqrt{3} by 6.
x=\sqrt{3}-2 x=-\sqrt{3}-2
The equation is now solved.
3x^{2}+12x+3=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
3x^{2}+12x+3-3=-3
Subtract 3 from both sides of the equation.
3x^{2}+12x=-3
Subtracting 3 from itself leaves 0.
\frac{3x^{2}+12x}{3}=-\frac{3}{3}
Divide both sides by 3.
x^{2}+\frac{12}{3}x=-\frac{3}{3}
Dividing by 3 undoes the multiplication by 3.
x^{2}+4x=-\frac{3}{3}
Divide 12 by 3.
x^{2}+4x=-1
Divide -3 by 3.
x^{2}+4x+2^{2}=-1+2^{2}
Divide 4, the coefficient of the x term, by 2 to get 2. Then add the square of 2 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+4x+4=-1+4
Square 2.
x^{2}+4x+4=3
Add -1 to 4.
\left(x+2\right)^{2}=3
Factor x^{2}+4x+4. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+2\right)^{2}}=\sqrt{3}
Take the square root of both sides of the equation.
x+2=\sqrt{3} x+2=-\sqrt{3}
Simplify.
x=\sqrt{3}-2 x=-\sqrt{3}-2
Subtract 2 from both sides of the equation.
3x^{2}+12x+3=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-12±\sqrt{12^{2}-4\times 3\times 3}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, 12 for b, and 3 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-12±\sqrt{144-4\times 3\times 3}}{2\times 3}
Square 12.
x=\frac{-12±\sqrt{144-12\times 3}}{2\times 3}
Multiply -4 times 3.
x=\frac{-12±\sqrt{144-36}}{2\times 3}
Multiply -12 times 3.
x=\frac{-12±\sqrt{108}}{2\times 3}
Add 144 to -36.
x=\frac{-12±6\sqrt{3}}{2\times 3}
Take the square root of 108.
x=\frac{-12±6\sqrt{3}}{6}
Multiply 2 times 3.
x=\frac{6\sqrt{3}-12}{6}
Now solve the equation x=\frac{-12±6\sqrt{3}}{6} when ± is plus. Add -12 to 6\sqrt{3}.
x=\sqrt{3}-2
Divide -12+6\sqrt{3} by 6.
x=\frac{-6\sqrt{3}-12}{6}
Now solve the equation x=\frac{-12±6\sqrt{3}}{6} when ± is minus. Subtract 6\sqrt{3} from -12.
x=-\sqrt{3}-2
Divide -12-6\sqrt{3} by 6.
x=\sqrt{3}-2 x=-\sqrt{3}-2
The equation is now solved.
3x^{2}+12x+3=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
3x^{2}+12x+3-3=-3
Subtract 3 from both sides of the equation.
3x^{2}+12x=-3
Subtracting 3 from itself leaves 0.
\frac{3x^{2}+12x}{3}=-\frac{3}{3}
Divide both sides by 3.
x^{2}+\frac{12}{3}x=-\frac{3}{3}
Dividing by 3 undoes the multiplication by 3.
x^{2}+4x=-\frac{3}{3}
Divide 12 by 3.
x^{2}+4x=-1
Divide -3 by 3.
x^{2}+4x+2^{2}=-1+2^{2}
Divide 4, the coefficient of the x term, by 2 to get 2. Then add the square of 2 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+4x+4=-1+4
Square 2.
x^{2}+4x+4=3
Add -1 to 4.
\left(x+2\right)^{2}=3
Factor x^{2}+4x+4. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+2\right)^{2}}=\sqrt{3}
Take the square root of both sides of the equation.
x+2=\sqrt{3} x+2=-\sqrt{3}
Simplify.
x=\sqrt{3}-2 x=-\sqrt{3}-2
Subtract 2 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}