Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

3x^{2}+11x+12=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-11±\sqrt{11^{2}-4\times 3\times 12}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, 11 for b, and 12 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-11±\sqrt{121-4\times 3\times 12}}{2\times 3}
Square 11.
x=\frac{-11±\sqrt{121-12\times 12}}{2\times 3}
Multiply -4 times 3.
x=\frac{-11±\sqrt{121-144}}{2\times 3}
Multiply -12 times 12.
x=\frac{-11±\sqrt{-23}}{2\times 3}
Add 121 to -144.
x=\frac{-11±\sqrt{23}i}{2\times 3}
Take the square root of -23.
x=\frac{-11±\sqrt{23}i}{6}
Multiply 2 times 3.
x=\frac{-11+\sqrt{23}i}{6}
Now solve the equation x=\frac{-11±\sqrt{23}i}{6} when ± is plus. Add -11 to i\sqrt{23}.
x=\frac{-\sqrt{23}i-11}{6}
Now solve the equation x=\frac{-11±\sqrt{23}i}{6} when ± is minus. Subtract i\sqrt{23} from -11.
x=\frac{-11+\sqrt{23}i}{6} x=\frac{-\sqrt{23}i-11}{6}
The equation is now solved.
3x^{2}+11x+12=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
3x^{2}+11x+12-12=-12
Subtract 12 from both sides of the equation.
3x^{2}+11x=-12
Subtracting 12 from itself leaves 0.
\frac{3x^{2}+11x}{3}=-\frac{12}{3}
Divide both sides by 3.
x^{2}+\frac{11}{3}x=-\frac{12}{3}
Dividing by 3 undoes the multiplication by 3.
x^{2}+\frac{11}{3}x=-4
Divide -12 by 3.
x^{2}+\frac{11}{3}x+\left(\frac{11}{6}\right)^{2}=-4+\left(\frac{11}{6}\right)^{2}
Divide \frac{11}{3}, the coefficient of the x term, by 2 to get \frac{11}{6}. Then add the square of \frac{11}{6} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{11}{3}x+\frac{121}{36}=-4+\frac{121}{36}
Square \frac{11}{6} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{11}{3}x+\frac{121}{36}=-\frac{23}{36}
Add -4 to \frac{121}{36}.
\left(x+\frac{11}{6}\right)^{2}=-\frac{23}{36}
Factor x^{2}+\frac{11}{3}x+\frac{121}{36}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{11}{6}\right)^{2}}=\sqrt{-\frac{23}{36}}
Take the square root of both sides of the equation.
x+\frac{11}{6}=\frac{\sqrt{23}i}{6} x+\frac{11}{6}=-\frac{\sqrt{23}i}{6}
Simplify.
x=\frac{-11+\sqrt{23}i}{6} x=\frac{-\sqrt{23}i-11}{6}
Subtract \frac{11}{6} from both sides of the equation.