Solve for x (complex solution)
x=\frac{-11+\sqrt{167}i}{6}\approx -1.833333333+2.153807997i
x=\frac{-\sqrt{167}i-11}{6}\approx -1.833333333-2.153807997i
Graph
Share
Copied to clipboard
3x^{2}+11x=-24
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
3x^{2}+11x-\left(-24\right)=-24-\left(-24\right)
Add 24 to both sides of the equation.
3x^{2}+11x-\left(-24\right)=0
Subtracting -24 from itself leaves 0.
3x^{2}+11x+24=0
Subtract -24 from 0.
x=\frac{-11±\sqrt{11^{2}-4\times 3\times 24}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, 11 for b, and 24 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-11±\sqrt{121-4\times 3\times 24}}{2\times 3}
Square 11.
x=\frac{-11±\sqrt{121-12\times 24}}{2\times 3}
Multiply -4 times 3.
x=\frac{-11±\sqrt{121-288}}{2\times 3}
Multiply -12 times 24.
x=\frac{-11±\sqrt{-167}}{2\times 3}
Add 121 to -288.
x=\frac{-11±\sqrt{167}i}{2\times 3}
Take the square root of -167.
x=\frac{-11±\sqrt{167}i}{6}
Multiply 2 times 3.
x=\frac{-11+\sqrt{167}i}{6}
Now solve the equation x=\frac{-11±\sqrt{167}i}{6} when ± is plus. Add -11 to i\sqrt{167}.
x=\frac{-\sqrt{167}i-11}{6}
Now solve the equation x=\frac{-11±\sqrt{167}i}{6} when ± is minus. Subtract i\sqrt{167} from -11.
x=\frac{-11+\sqrt{167}i}{6} x=\frac{-\sqrt{167}i-11}{6}
The equation is now solved.
3x^{2}+11x=-24
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{3x^{2}+11x}{3}=-\frac{24}{3}
Divide both sides by 3.
x^{2}+\frac{11}{3}x=-\frac{24}{3}
Dividing by 3 undoes the multiplication by 3.
x^{2}+\frac{11}{3}x=-8
Divide -24 by 3.
x^{2}+\frac{11}{3}x+\left(\frac{11}{6}\right)^{2}=-8+\left(\frac{11}{6}\right)^{2}
Divide \frac{11}{3}, the coefficient of the x term, by 2 to get \frac{11}{6}. Then add the square of \frac{11}{6} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{11}{3}x+\frac{121}{36}=-8+\frac{121}{36}
Square \frac{11}{6} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{11}{3}x+\frac{121}{36}=-\frac{167}{36}
Add -8 to \frac{121}{36}.
\left(x+\frac{11}{6}\right)^{2}=-\frac{167}{36}
Factor x^{2}+\frac{11}{3}x+\frac{121}{36}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{11}{6}\right)^{2}}=\sqrt{-\frac{167}{36}}
Take the square root of both sides of the equation.
x+\frac{11}{6}=\frac{\sqrt{167}i}{6} x+\frac{11}{6}=-\frac{\sqrt{167}i}{6}
Simplify.
x=\frac{-11+\sqrt{167}i}{6} x=\frac{-\sqrt{167}i-11}{6}
Subtract \frac{11}{6} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}